Step |
Hyp |
Ref |
Expression |
1 |
|
gzrng.1 |
⊢ 𝑍 = ( ℂfld ↾s ℤ[i] ) |
2 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
3 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
4 |
|
gzsubrg |
⊢ ℤ[i] ∈ ( SubRing ‘ ℂfld ) |
5 |
1
|
subrgring |
⊢ ( ℤ[i] ∈ ( SubRing ‘ ℂfld ) → 𝑍 ∈ Ring ) |
6 |
|
eqid |
⊢ ( Unit ‘ 𝑍 ) = ( Unit ‘ 𝑍 ) |
7 |
|
subrgsubg |
⊢ ( ℤ[i] ∈ ( SubRing ‘ ℂfld ) → ℤ[i] ∈ ( SubGrp ‘ ℂfld ) ) |
8 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
9 |
1 8
|
subg0 |
⊢ ( ℤ[i] ∈ ( SubGrp ‘ ℂfld ) → 0 = ( 0g ‘ 𝑍 ) ) |
10 |
4 7 9
|
mp2b |
⊢ 0 = ( 0g ‘ 𝑍 ) |
11 |
|
cnfld1 |
⊢ 1 = ( 1r ‘ ℂfld ) |
12 |
1 11
|
subrg1 |
⊢ ( ℤ[i] ∈ ( SubRing ‘ ℂfld ) → 1 = ( 1r ‘ 𝑍 ) ) |
13 |
4 12
|
ax-mp |
⊢ 1 = ( 1r ‘ 𝑍 ) |
14 |
6 10 13
|
0unit |
⊢ ( 𝑍 ∈ Ring → ( 0 ∈ ( Unit ‘ 𝑍 ) ↔ 1 = 0 ) ) |
15 |
4 5 14
|
mp2b |
⊢ ( 0 ∈ ( Unit ‘ 𝑍 ) ↔ 1 = 0 ) |
16 |
3 15
|
nemtbir |
⊢ ¬ 0 ∈ ( Unit ‘ 𝑍 ) |
17 |
1
|
subrgbas |
⊢ ( ℤ[i] ∈ ( SubRing ‘ ℂfld ) → ℤ[i] = ( Base ‘ 𝑍 ) ) |
18 |
4 17
|
ax-mp |
⊢ ℤ[i] = ( Base ‘ 𝑍 ) |
19 |
18 6
|
unitcl |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → 𝐴 ∈ ℤ[i] ) |
20 |
|
gzabssqcl |
⊢ ( 𝐴 ∈ ℤ[i] → ( ( abs ‘ 𝐴 ) ↑ 2 ) ∈ ℕ0 ) |
21 |
19 20
|
syl |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) ∈ ℕ0 ) |
22 |
|
elnn0 |
⊢ ( ( ( abs ‘ 𝐴 ) ↑ 2 ) ∈ ℕ0 ↔ ( ( ( abs ‘ 𝐴 ) ↑ 2 ) ∈ ℕ ∨ ( ( abs ‘ 𝐴 ) ↑ 2 ) = 0 ) ) |
23 |
21 22
|
sylib |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) ∈ ℕ ∨ ( ( abs ‘ 𝐴 ) ↑ 2 ) = 0 ) ) |
24 |
23
|
ord |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( ¬ ( ( abs ‘ 𝐴 ) ↑ 2 ) ∈ ℕ → ( ( abs ‘ 𝐴 ) ↑ 2 ) = 0 ) ) |
25 |
|
gzcn |
⊢ ( 𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ ) |
26 |
19 25
|
syl |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → 𝐴 ∈ ℂ ) |
27 |
26
|
abscld |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
28 |
27
|
recnd |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( abs ‘ 𝐴 ) ∈ ℂ ) |
29 |
|
sqeq0 |
⊢ ( ( abs ‘ 𝐴 ) ∈ ℂ → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) = 0 ↔ ( abs ‘ 𝐴 ) = 0 ) ) |
30 |
28 29
|
syl |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) = 0 ↔ ( abs ‘ 𝐴 ) = 0 ) ) |
31 |
26
|
abs00ad |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( ( abs ‘ 𝐴 ) = 0 ↔ 𝐴 = 0 ) ) |
32 |
|
eleq1 |
⊢ ( 𝐴 = 0 → ( 𝐴 ∈ ( Unit ‘ 𝑍 ) ↔ 0 ∈ ( Unit ‘ 𝑍 ) ) ) |
33 |
32
|
biimpcd |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( 𝐴 = 0 → 0 ∈ ( Unit ‘ 𝑍 ) ) ) |
34 |
31 33
|
sylbid |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( ( abs ‘ 𝐴 ) = 0 → 0 ∈ ( Unit ‘ 𝑍 ) ) ) |
35 |
30 34
|
sylbid |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) = 0 → 0 ∈ ( Unit ‘ 𝑍 ) ) ) |
36 |
24 35
|
syld |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( ¬ ( ( abs ‘ 𝐴 ) ↑ 2 ) ∈ ℕ → 0 ∈ ( Unit ‘ 𝑍 ) ) ) |
37 |
16 36
|
mt3i |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) ∈ ℕ ) |
38 |
37
|
nnge1d |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → 1 ≤ ( ( abs ‘ 𝐴 ) ↑ 2 ) ) |
39 |
2 38
|
eqbrtrid |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( 1 ↑ 2 ) ≤ ( ( abs ‘ 𝐴 ) ↑ 2 ) ) |
40 |
26
|
absge0d |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → 0 ≤ ( abs ‘ 𝐴 ) ) |
41 |
|
1re |
⊢ 1 ∈ ℝ |
42 |
|
0le1 |
⊢ 0 ≤ 1 |
43 |
|
le2sq |
⊢ ( ( ( 1 ∈ ℝ ∧ 0 ≤ 1 ) ∧ ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) ) → ( 1 ≤ ( abs ‘ 𝐴 ) ↔ ( 1 ↑ 2 ) ≤ ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) |
44 |
41 42 43
|
mpanl12 |
⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) → ( 1 ≤ ( abs ‘ 𝐴 ) ↔ ( 1 ↑ 2 ) ≤ ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) |
45 |
27 40 44
|
syl2anc |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( 1 ≤ ( abs ‘ 𝐴 ) ↔ ( 1 ↑ 2 ) ≤ ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) |
46 |
39 45
|
mpbird |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → 1 ≤ ( abs ‘ 𝐴 ) ) |