Description: The gaussian integers are closed under subtraction. (Contributed by Mario Carneiro, 14-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | gzsubcl | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i] ) → ( 𝐴 − 𝐵 ) ∈ ℤ[i] ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gzcn | ⊢ ( 𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ ) | |
2 | gzcn | ⊢ ( 𝐵 ∈ ℤ[i] → 𝐵 ∈ ℂ ) | |
3 | negsub | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) | |
4 | 1 2 3 | syl2an | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i] ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) |
5 | gznegcl | ⊢ ( 𝐵 ∈ ℤ[i] → - 𝐵 ∈ ℤ[i] ) | |
6 | gzaddcl | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ - 𝐵 ∈ ℤ[i] ) → ( 𝐴 + - 𝐵 ) ∈ ℤ[i] ) | |
7 | 5 6 | sylan2 | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i] ) → ( 𝐴 + - 𝐵 ) ∈ ℤ[i] ) |
8 | 4 7 | eqeltrrd | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i] ) → ( 𝐴 − 𝐵 ) ∈ ℤ[i] ) |