Description: The gaussian integers are closed under subtraction. (Contributed by Mario Carneiro, 14-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gzsubcl | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i] ) → ( 𝐴 − 𝐵 ) ∈ ℤ[i] ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | gzcn | ⊢ ( 𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ ) | |
| 2 | gzcn | ⊢ ( 𝐵 ∈ ℤ[i] → 𝐵 ∈ ℂ ) | |
| 3 | negsub | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i] ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) | 
| 5 | gznegcl | ⊢ ( 𝐵 ∈ ℤ[i] → - 𝐵 ∈ ℤ[i] ) | |
| 6 | gzaddcl | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ - 𝐵 ∈ ℤ[i] ) → ( 𝐴 + - 𝐵 ) ∈ ℤ[i] ) | |
| 7 | 5 6 | sylan2 | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i] ) → ( 𝐴 + - 𝐵 ) ∈ ℤ[i] ) | 
| 8 | 4 7 | eqeltrrd | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i] ) → ( 𝐴 − 𝐵 ) ∈ ℤ[i] ) |