Description: The gaussian integers form a subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | gzsubrg | ⊢ ℤ[i] ∈ ( SubRing ‘ ℂfld ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gzcn | ⊢ ( 𝑥 ∈ ℤ[i] → 𝑥 ∈ ℂ ) | |
2 | gzaddcl | ⊢ ( ( 𝑥 ∈ ℤ[i] ∧ 𝑦 ∈ ℤ[i] ) → ( 𝑥 + 𝑦 ) ∈ ℤ[i] ) | |
3 | gznegcl | ⊢ ( 𝑥 ∈ ℤ[i] → - 𝑥 ∈ ℤ[i] ) | |
4 | 1z | ⊢ 1 ∈ ℤ | |
5 | zgz | ⊢ ( 1 ∈ ℤ → 1 ∈ ℤ[i] ) | |
6 | 4 5 | ax-mp | ⊢ 1 ∈ ℤ[i] |
7 | gzmulcl | ⊢ ( ( 𝑥 ∈ ℤ[i] ∧ 𝑦 ∈ ℤ[i] ) → ( 𝑥 · 𝑦 ) ∈ ℤ[i] ) | |
8 | 1 2 3 6 7 | cnsubrglem | ⊢ ℤ[i] ∈ ( SubRing ‘ ℂfld ) |