| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							snssi | 
							⊢ ( 𝐴  ∈   ℋ  →  { 𝐴 }  ⊆   ℋ )  | 
						
						
							| 2 | 
							
								
							 | 
							occl | 
							⊢ ( { 𝐴 }  ⊆   ℋ  →  ( ⊥ ‘ { 𝐴 } )  ∈   Cℋ  )  | 
						
						
							| 3 | 
							
								
							 | 
							choccl | 
							⊢ ( ( ⊥ ‘ { 𝐴 } )  ∈   Cℋ   →  ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) )  ∈   Cℋ  )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							3syl | 
							⊢ ( 𝐴  ∈   ℋ  →  ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) )  ∈   Cℋ  )  | 
						
						
							| 5 | 
							
								4
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) )  ∈   Cℋ  )  | 
						
						
							| 6 | 
							
								
							 | 
							h1dn0 | 
							⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) )  ≠  0ℋ )  | 
						
						
							| 7 | 
							
								
							 | 
							h1datom | 
							⊢ ( ( 𝑥  ∈   Cℋ   ∧  𝐴  ∈   ℋ )  →  ( 𝑥  ⊆  ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) )  →  ( 𝑥  =  ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) )  ∨  𝑥  =  0ℋ ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							expcom | 
							⊢ ( 𝐴  ∈   ℋ  →  ( 𝑥  ∈   Cℋ   →  ( 𝑥  ⊆  ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) )  →  ( 𝑥  =  ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) )  ∨  𝑥  =  0ℋ ) ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							ralrimiv | 
							⊢ ( 𝐴  ∈   ℋ  →  ∀ 𝑥  ∈   Cℋ  ( 𝑥  ⊆  ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) )  →  ( 𝑥  =  ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) )  ∨  𝑥  =  0ℋ ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ∀ 𝑥  ∈   Cℋ  ( 𝑥  ⊆  ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) )  →  ( 𝑥  =  ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) )  ∨  𝑥  =  0ℋ ) ) )  | 
						
						
							| 11 | 
							
								6 10
							 | 
							jca | 
							⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ( ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) )  ≠  0ℋ  ∧  ∀ 𝑥  ∈   Cℋ  ( 𝑥  ⊆  ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) )  →  ( 𝑥  =  ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) )  ∨  𝑥  =  0ℋ ) ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							elat2 | 
							⊢ ( ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) )  ∈  HAtoms  ↔  ( ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) )  ∈   Cℋ   ∧  ( ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) )  ≠  0ℋ  ∧  ∀ 𝑥  ∈   Cℋ  ( 𝑥  ⊆  ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) )  →  ( 𝑥  =  ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) )  ∨  𝑥  =  0ℋ ) ) ) ) )  | 
						
						
							| 13 | 
							
								5 11 12
							 | 
							sylanbrc | 
							⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) )  ∈  HAtoms )  |