Metamath Proof Explorer


Theorem h1da

Description: A 1-dimensional subspace is an atom. (Contributed by NM, 22-Jul-2001) (New usage is discouraged.)

Ref Expression
Assertion h1da ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0 ) → ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ∈ HAtoms )

Proof

Step Hyp Ref Expression
1 snssi ( 𝐴 ∈ ℋ → { 𝐴 } ⊆ ℋ )
2 occl ( { 𝐴 } ⊆ ℋ → ( ⊥ ‘ { 𝐴 } ) ∈ C )
3 choccl ( ( ⊥ ‘ { 𝐴 } ) ∈ C → ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ∈ C )
4 1 2 3 3syl ( 𝐴 ∈ ℋ → ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ∈ C )
5 4 adantr ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0 ) → ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ∈ C )
6 h1dn0 ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0 ) → ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ≠ 0 )
7 h1datom ( ( 𝑥C𝐴 ∈ ℋ ) → ( 𝑥 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) → ( 𝑥 = ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ∨ 𝑥 = 0 ) ) )
8 7 expcom ( 𝐴 ∈ ℋ → ( 𝑥C → ( 𝑥 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) → ( 𝑥 = ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ∨ 𝑥 = 0 ) ) ) )
9 8 ralrimiv ( 𝐴 ∈ ℋ → ∀ 𝑥C ( 𝑥 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) → ( 𝑥 = ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ∨ 𝑥 = 0 ) ) )
10 9 adantr ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0 ) → ∀ 𝑥C ( 𝑥 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) → ( 𝑥 = ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ∨ 𝑥 = 0 ) ) )
11 6 10 jca ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0 ) → ( ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ≠ 0 ∧ ∀ 𝑥C ( 𝑥 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) → ( 𝑥 = ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ∨ 𝑥 = 0 ) ) ) )
12 elat2 ( ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ∈ HAtoms ↔ ( ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ∈ C ∧ ( ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ≠ 0 ∧ ∀ 𝑥C ( 𝑥 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) → ( 𝑥 = ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ∨ 𝑥 = 0 ) ) ) ) )
13 5 11 12 sylanbrc ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0 ) → ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ∈ HAtoms )