Metamath Proof Explorer


Theorem h1datomi

Description: A 1-dimensional subspace is an atom. (Contributed by NM, 20-Jul-2001) (New usage is discouraged.)

Ref Expression
Hypotheses h1datom.1 𝐴C
h1datom.2 𝐵 ∈ ℋ
Assertion h1datomi ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( 𝐴 = ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ∨ 𝐴 = 0 ) )

Proof

Step Hyp Ref Expression
1 h1datom.1 𝐴C
2 h1datom.2 𝐵 ∈ ℋ
3 1 chne0i ( 𝐴 ≠ 0 ↔ ∃ 𝑥𝐴 𝑥 ≠ 0 )
4 ssel ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( 𝑥𝐴𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) )
5 2 h1de2ci ( 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ ∃ 𝑦 ∈ ℂ 𝑥 = ( 𝑦 · 𝐵 ) )
6 oveq1 ( 𝑦 = 0 → ( 𝑦 · 𝐵 ) = ( 0 · 𝐵 ) )
7 ax-hvmul0 ( 𝐵 ∈ ℋ → ( 0 · 𝐵 ) = 0 )
8 2 7 ax-mp ( 0 · 𝐵 ) = 0
9 6 8 eqtrdi ( 𝑦 = 0 → ( 𝑦 · 𝐵 ) = 0 )
10 eqeq1 ( 𝑥 = ( 𝑦 · 𝐵 ) → ( 𝑥 = 0 ↔ ( 𝑦 · 𝐵 ) = 0 ) )
11 9 10 syl5ibr ( 𝑥 = ( 𝑦 · 𝐵 ) → ( 𝑦 = 0 → 𝑥 = 0 ) )
12 11 necon3d ( 𝑥 = ( 𝑦 · 𝐵 ) → ( 𝑥 ≠ 0𝑦 ≠ 0 ) )
13 12 adantl ( ( 𝑦 ∈ ℂ ∧ 𝑥 = ( 𝑦 · 𝐵 ) ) → ( 𝑥 ≠ 0𝑦 ≠ 0 ) )
14 reccl ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → ( 1 / 𝑦 ) ∈ ℂ )
15 1 chshii 𝐴S
16 shmulcl ( ( 𝐴S ∧ ( 1 / 𝑦 ) ∈ ℂ ∧ 𝑥𝐴 ) → ( ( 1 / 𝑦 ) · 𝑥 ) ∈ 𝐴 )
17 15 16 mp3an1 ( ( ( 1 / 𝑦 ) ∈ ℂ ∧ 𝑥𝐴 ) → ( ( 1 / 𝑦 ) · 𝑥 ) ∈ 𝐴 )
18 17 ex ( ( 1 / 𝑦 ) ∈ ℂ → ( 𝑥𝐴 → ( ( 1 / 𝑦 ) · 𝑥 ) ∈ 𝐴 ) )
19 14 18 syl ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → ( 𝑥𝐴 → ( ( 1 / 𝑦 ) · 𝑥 ) ∈ 𝐴 ) )
20 19 adantr ( ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ∧ 𝑥 = ( 𝑦 · 𝐵 ) ) → ( 𝑥𝐴 → ( ( 1 / 𝑦 ) · 𝑥 ) ∈ 𝐴 ) )
21 oveq2 ( 𝑥 = ( 𝑦 · 𝐵 ) → ( ( 1 / 𝑦 ) · 𝑥 ) = ( ( 1 / 𝑦 ) · ( 𝑦 · 𝐵 ) ) )
22 simpl ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → 𝑦 ∈ ℂ )
23 ax-hvmulass ( ( ( 1 / 𝑦 ) ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( ( 1 / 𝑦 ) · 𝑦 ) · 𝐵 ) = ( ( 1 / 𝑦 ) · ( 𝑦 · 𝐵 ) ) )
24 2 23 mp3an3 ( ( ( 1 / 𝑦 ) ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( ( 1 / 𝑦 ) · 𝑦 ) · 𝐵 ) = ( ( 1 / 𝑦 ) · ( 𝑦 · 𝐵 ) ) )
25 14 22 24 syl2anc ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → ( ( ( 1 / 𝑦 ) · 𝑦 ) · 𝐵 ) = ( ( 1 / 𝑦 ) · ( 𝑦 · 𝐵 ) ) )
26 recid2 ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → ( ( 1 / 𝑦 ) · 𝑦 ) = 1 )
27 26 oveq1d ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → ( ( ( 1 / 𝑦 ) · 𝑦 ) · 𝐵 ) = ( 1 · 𝐵 ) )
28 25 27 eqtr3d ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → ( ( 1 / 𝑦 ) · ( 𝑦 · 𝐵 ) ) = ( 1 · 𝐵 ) )
29 ax-hvmulid ( 𝐵 ∈ ℋ → ( 1 · 𝐵 ) = 𝐵 )
30 2 29 ax-mp ( 1 · 𝐵 ) = 𝐵
31 28 30 eqtrdi ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → ( ( 1 / 𝑦 ) · ( 𝑦 · 𝐵 ) ) = 𝐵 )
32 21 31 sylan9eqr ( ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ∧ 𝑥 = ( 𝑦 · 𝐵 ) ) → ( ( 1 / 𝑦 ) · 𝑥 ) = 𝐵 )
33 32 eleq1d ( ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ∧ 𝑥 = ( 𝑦 · 𝐵 ) ) → ( ( ( 1 / 𝑦 ) · 𝑥 ) ∈ 𝐴𝐵𝐴 ) )
34 20 33 sylibd ( ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ∧ 𝑥 = ( 𝑦 · 𝐵 ) ) → ( 𝑥𝐴𝐵𝐴 ) )
35 34 exp31 ( 𝑦 ∈ ℂ → ( 𝑦 ≠ 0 → ( 𝑥 = ( 𝑦 · 𝐵 ) → ( 𝑥𝐴𝐵𝐴 ) ) ) )
36 35 com23 ( 𝑦 ∈ ℂ → ( 𝑥 = ( 𝑦 · 𝐵 ) → ( 𝑦 ≠ 0 → ( 𝑥𝐴𝐵𝐴 ) ) ) )
37 36 imp ( ( 𝑦 ∈ ℂ ∧ 𝑥 = ( 𝑦 · 𝐵 ) ) → ( 𝑦 ≠ 0 → ( 𝑥𝐴𝐵𝐴 ) ) )
38 13 37 syld ( ( 𝑦 ∈ ℂ ∧ 𝑥 = ( 𝑦 · 𝐵 ) ) → ( 𝑥 ≠ 0 → ( 𝑥𝐴𝐵𝐴 ) ) )
39 38 com3r ( 𝑥𝐴 → ( ( 𝑦 ∈ ℂ ∧ 𝑥 = ( 𝑦 · 𝐵 ) ) → ( 𝑥 ≠ 0𝐵𝐴 ) ) )
40 39 expd ( 𝑥𝐴 → ( 𝑦 ∈ ℂ → ( 𝑥 = ( 𝑦 · 𝐵 ) → ( 𝑥 ≠ 0𝐵𝐴 ) ) ) )
41 40 rexlimdv ( 𝑥𝐴 → ( ∃ 𝑦 ∈ ℂ 𝑥 = ( 𝑦 · 𝐵 ) → ( 𝑥 ≠ 0𝐵𝐴 ) ) )
42 5 41 syl5bi ( 𝑥𝐴 → ( 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( 𝑥 ≠ 0𝐵𝐴 ) ) )
43 4 42 sylcom ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( 𝑥𝐴 → ( 𝑥 ≠ 0𝐵𝐴 ) ) )
44 43 rexlimdv ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( ∃ 𝑥𝐴 𝑥 ≠ 0𝐵𝐴 ) )
45 3 44 syl5bi ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( 𝐴 ≠ 0𝐵𝐴 ) )
46 snssi ( 𝐵𝐴 → { 𝐵 } ⊆ 𝐴 )
47 snssi ( 𝐵 ∈ ℋ → { 𝐵 } ⊆ ℋ )
48 2 47 ax-mp { 𝐵 } ⊆ ℋ
49 1 chssii 𝐴 ⊆ ℋ
50 48 49 occon2i ( { 𝐵 } ⊆ 𝐴 → ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) )
51 46 50 syl ( 𝐵𝐴 → ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) )
52 1 ococi ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = 𝐴
53 51 52 sseqtrdi ( 𝐵𝐴 → ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ⊆ 𝐴 )
54 45 53 syl6 ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( 𝐴 ≠ 0 → ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ⊆ 𝐴 ) )
55 54 anc2li ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( 𝐴 ≠ 0 → ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ∧ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ⊆ 𝐴 ) ) )
56 eqss ( 𝐴 = ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ∧ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ⊆ 𝐴 ) )
57 55 56 syl6ibr ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( 𝐴 ≠ 0𝐴 = ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) )
58 57 necon1d ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( 𝐴 ≠ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → 𝐴 = 0 ) )
59 neor ( ( 𝐴 = ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ∨ 𝐴 = 0 ) ↔ ( 𝐴 ≠ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → 𝐴 = 0 ) )
60 58 59 sylibr ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( 𝐴 = ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ∨ 𝐴 = 0 ) )