Step |
Hyp |
Ref |
Expression |
1 |
|
h1datom.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
|
h1datom.2 |
⊢ 𝐵 ∈ ℋ |
3 |
1
|
chne0i |
⊢ ( 𝐴 ≠ 0ℋ ↔ ∃ 𝑥 ∈ 𝐴 𝑥 ≠ 0ℎ ) |
4 |
|
ssel |
⊢ ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) ) |
5 |
2
|
h1de2ci |
⊢ ( 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ ∃ 𝑦 ∈ ℂ 𝑥 = ( 𝑦 ·ℎ 𝐵 ) ) |
6 |
|
oveq1 |
⊢ ( 𝑦 = 0 → ( 𝑦 ·ℎ 𝐵 ) = ( 0 ·ℎ 𝐵 ) ) |
7 |
|
ax-hvmul0 |
⊢ ( 𝐵 ∈ ℋ → ( 0 ·ℎ 𝐵 ) = 0ℎ ) |
8 |
2 7
|
ax-mp |
⊢ ( 0 ·ℎ 𝐵 ) = 0ℎ |
9 |
6 8
|
eqtrdi |
⊢ ( 𝑦 = 0 → ( 𝑦 ·ℎ 𝐵 ) = 0ℎ ) |
10 |
|
eqeq1 |
⊢ ( 𝑥 = ( 𝑦 ·ℎ 𝐵 ) → ( 𝑥 = 0ℎ ↔ ( 𝑦 ·ℎ 𝐵 ) = 0ℎ ) ) |
11 |
9 10
|
syl5ibr |
⊢ ( 𝑥 = ( 𝑦 ·ℎ 𝐵 ) → ( 𝑦 = 0 → 𝑥 = 0ℎ ) ) |
12 |
11
|
necon3d |
⊢ ( 𝑥 = ( 𝑦 ·ℎ 𝐵 ) → ( 𝑥 ≠ 0ℎ → 𝑦 ≠ 0 ) ) |
13 |
12
|
adantl |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 = ( 𝑦 ·ℎ 𝐵 ) ) → ( 𝑥 ≠ 0ℎ → 𝑦 ≠ 0 ) ) |
14 |
|
reccl |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → ( 1 / 𝑦 ) ∈ ℂ ) |
15 |
1
|
chshii |
⊢ 𝐴 ∈ Sℋ |
16 |
|
shmulcl |
⊢ ( ( 𝐴 ∈ Sℋ ∧ ( 1 / 𝑦 ) ∈ ℂ ∧ 𝑥 ∈ 𝐴 ) → ( ( 1 / 𝑦 ) ·ℎ 𝑥 ) ∈ 𝐴 ) |
17 |
15 16
|
mp3an1 |
⊢ ( ( ( 1 / 𝑦 ) ∈ ℂ ∧ 𝑥 ∈ 𝐴 ) → ( ( 1 / 𝑦 ) ·ℎ 𝑥 ) ∈ 𝐴 ) |
18 |
17
|
ex |
⊢ ( ( 1 / 𝑦 ) ∈ ℂ → ( 𝑥 ∈ 𝐴 → ( ( 1 / 𝑦 ) ·ℎ 𝑥 ) ∈ 𝐴 ) ) |
19 |
14 18
|
syl |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → ( 𝑥 ∈ 𝐴 → ( ( 1 / 𝑦 ) ·ℎ 𝑥 ) ∈ 𝐴 ) ) |
20 |
19
|
adantr |
⊢ ( ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ∧ 𝑥 = ( 𝑦 ·ℎ 𝐵 ) ) → ( 𝑥 ∈ 𝐴 → ( ( 1 / 𝑦 ) ·ℎ 𝑥 ) ∈ 𝐴 ) ) |
21 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 ·ℎ 𝐵 ) → ( ( 1 / 𝑦 ) ·ℎ 𝑥 ) = ( ( 1 / 𝑦 ) ·ℎ ( 𝑦 ·ℎ 𝐵 ) ) ) |
22 |
|
simpl |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → 𝑦 ∈ ℂ ) |
23 |
|
ax-hvmulass |
⊢ ( ( ( 1 / 𝑦 ) ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( ( 1 / 𝑦 ) · 𝑦 ) ·ℎ 𝐵 ) = ( ( 1 / 𝑦 ) ·ℎ ( 𝑦 ·ℎ 𝐵 ) ) ) |
24 |
2 23
|
mp3an3 |
⊢ ( ( ( 1 / 𝑦 ) ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( ( 1 / 𝑦 ) · 𝑦 ) ·ℎ 𝐵 ) = ( ( 1 / 𝑦 ) ·ℎ ( 𝑦 ·ℎ 𝐵 ) ) ) |
25 |
14 22 24
|
syl2anc |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → ( ( ( 1 / 𝑦 ) · 𝑦 ) ·ℎ 𝐵 ) = ( ( 1 / 𝑦 ) ·ℎ ( 𝑦 ·ℎ 𝐵 ) ) ) |
26 |
|
recid2 |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → ( ( 1 / 𝑦 ) · 𝑦 ) = 1 ) |
27 |
26
|
oveq1d |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → ( ( ( 1 / 𝑦 ) · 𝑦 ) ·ℎ 𝐵 ) = ( 1 ·ℎ 𝐵 ) ) |
28 |
25 27
|
eqtr3d |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → ( ( 1 / 𝑦 ) ·ℎ ( 𝑦 ·ℎ 𝐵 ) ) = ( 1 ·ℎ 𝐵 ) ) |
29 |
|
ax-hvmulid |
⊢ ( 𝐵 ∈ ℋ → ( 1 ·ℎ 𝐵 ) = 𝐵 ) |
30 |
2 29
|
ax-mp |
⊢ ( 1 ·ℎ 𝐵 ) = 𝐵 |
31 |
28 30
|
eqtrdi |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → ( ( 1 / 𝑦 ) ·ℎ ( 𝑦 ·ℎ 𝐵 ) ) = 𝐵 ) |
32 |
21 31
|
sylan9eqr |
⊢ ( ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ∧ 𝑥 = ( 𝑦 ·ℎ 𝐵 ) ) → ( ( 1 / 𝑦 ) ·ℎ 𝑥 ) = 𝐵 ) |
33 |
32
|
eleq1d |
⊢ ( ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ∧ 𝑥 = ( 𝑦 ·ℎ 𝐵 ) ) → ( ( ( 1 / 𝑦 ) ·ℎ 𝑥 ) ∈ 𝐴 ↔ 𝐵 ∈ 𝐴 ) ) |
34 |
20 33
|
sylibd |
⊢ ( ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ∧ 𝑥 = ( 𝑦 ·ℎ 𝐵 ) ) → ( 𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐴 ) ) |
35 |
34
|
exp31 |
⊢ ( 𝑦 ∈ ℂ → ( 𝑦 ≠ 0 → ( 𝑥 = ( 𝑦 ·ℎ 𝐵 ) → ( 𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐴 ) ) ) ) |
36 |
35
|
com23 |
⊢ ( 𝑦 ∈ ℂ → ( 𝑥 = ( 𝑦 ·ℎ 𝐵 ) → ( 𝑦 ≠ 0 → ( 𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐴 ) ) ) ) |
37 |
36
|
imp |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 = ( 𝑦 ·ℎ 𝐵 ) ) → ( 𝑦 ≠ 0 → ( 𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐴 ) ) ) |
38 |
13 37
|
syld |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 = ( 𝑦 ·ℎ 𝐵 ) ) → ( 𝑥 ≠ 0ℎ → ( 𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐴 ) ) ) |
39 |
38
|
com3r |
⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝑦 ∈ ℂ ∧ 𝑥 = ( 𝑦 ·ℎ 𝐵 ) ) → ( 𝑥 ≠ 0ℎ → 𝐵 ∈ 𝐴 ) ) ) |
40 |
39
|
expd |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ ℂ → ( 𝑥 = ( 𝑦 ·ℎ 𝐵 ) → ( 𝑥 ≠ 0ℎ → 𝐵 ∈ 𝐴 ) ) ) ) |
41 |
40
|
rexlimdv |
⊢ ( 𝑥 ∈ 𝐴 → ( ∃ 𝑦 ∈ ℂ 𝑥 = ( 𝑦 ·ℎ 𝐵 ) → ( 𝑥 ≠ 0ℎ → 𝐵 ∈ 𝐴 ) ) ) |
42 |
5 41
|
syl5bi |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( 𝑥 ≠ 0ℎ → 𝐵 ∈ 𝐴 ) ) ) |
43 |
4 42
|
sylcom |
⊢ ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( 𝑥 ∈ 𝐴 → ( 𝑥 ≠ 0ℎ → 𝐵 ∈ 𝐴 ) ) ) |
44 |
43
|
rexlimdv |
⊢ ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( ∃ 𝑥 ∈ 𝐴 𝑥 ≠ 0ℎ → 𝐵 ∈ 𝐴 ) ) |
45 |
3 44
|
syl5bi |
⊢ ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( 𝐴 ≠ 0ℋ → 𝐵 ∈ 𝐴 ) ) |
46 |
|
snssi |
⊢ ( 𝐵 ∈ 𝐴 → { 𝐵 } ⊆ 𝐴 ) |
47 |
|
snssi |
⊢ ( 𝐵 ∈ ℋ → { 𝐵 } ⊆ ℋ ) |
48 |
2 47
|
ax-mp |
⊢ { 𝐵 } ⊆ ℋ |
49 |
1
|
chssii |
⊢ 𝐴 ⊆ ℋ |
50 |
48 49
|
occon2i |
⊢ ( { 𝐵 } ⊆ 𝐴 → ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) |
51 |
46 50
|
syl |
⊢ ( 𝐵 ∈ 𝐴 → ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) |
52 |
1
|
ococi |
⊢ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = 𝐴 |
53 |
51 52
|
sseqtrdi |
⊢ ( 𝐵 ∈ 𝐴 → ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ⊆ 𝐴 ) |
54 |
45 53
|
syl6 |
⊢ ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( 𝐴 ≠ 0ℋ → ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ⊆ 𝐴 ) ) |
55 |
54
|
anc2li |
⊢ ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( 𝐴 ≠ 0ℋ → ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ∧ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ⊆ 𝐴 ) ) ) |
56 |
|
eqss |
⊢ ( 𝐴 = ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ∧ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ⊆ 𝐴 ) ) |
57 |
55 56
|
syl6ibr |
⊢ ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( 𝐴 ≠ 0ℋ → 𝐴 = ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) ) |
58 |
57
|
necon1d |
⊢ ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( 𝐴 ≠ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → 𝐴 = 0ℋ ) ) |
59 |
|
neor |
⊢ ( ( 𝐴 = ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ∨ 𝐴 = 0ℋ ) ↔ ( 𝐴 ≠ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → 𝐴 = 0ℋ ) ) |
60 |
58 59
|
sylibr |
⊢ ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( 𝐴 = ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ∨ 𝐴 = 0ℋ ) ) |