Step |
Hyp |
Ref |
Expression |
1 |
|
h1de2.1 |
⊢ 𝐴 ∈ ℋ |
2 |
|
h1de2.2 |
⊢ 𝐵 ∈ ℋ |
3 |
|
his6 |
⊢ ( 𝐵 ∈ ℋ → ( ( 𝐵 ·ih 𝐵 ) = 0 ↔ 𝐵 = 0ℎ ) ) |
4 |
2 3
|
ax-mp |
⊢ ( ( 𝐵 ·ih 𝐵 ) = 0 ↔ 𝐵 = 0ℎ ) |
5 |
4
|
necon3bii |
⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 ↔ 𝐵 ≠ 0ℎ ) |
6 |
1 2
|
h1de2i |
⊢ ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) = ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) |
7 |
6
|
adantl |
⊢ ( ( ( 𝐵 ·ih 𝐵 ) ≠ 0 ∧ 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) → ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) = ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) |
8 |
7
|
oveq2d |
⊢ ( ( ( 𝐵 ·ih 𝐵 ) ≠ 0 ∧ 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) → ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ·ℎ ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) = ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ·ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) |
9 |
2 2
|
hicli |
⊢ ( 𝐵 ·ih 𝐵 ) ∈ ℂ |
10 |
9
|
recclzi |
⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( 1 / ( 𝐵 ·ih 𝐵 ) ) ∈ ℂ ) |
11 |
|
ax-hvmulass |
⊢ ( ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ∈ ℂ ∧ ( 𝐵 ·ih 𝐵 ) ∈ ℂ ∧ 𝐴 ∈ ℋ ) → ( ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) · ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐴 ) = ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ·ℎ ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) ) |
12 |
9 1 11
|
mp3an23 |
⊢ ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ∈ ℂ → ( ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) · ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐴 ) = ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ·ℎ ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) ) |
13 |
10 12
|
syl |
⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) · ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐴 ) = ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ·ℎ ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) ) |
14 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
15 |
14 9
|
divcan1zi |
⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) · ( 𝐵 ·ih 𝐵 ) ) = 1 ) |
16 |
15
|
oveq1d |
⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) · ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐴 ) = ( 1 ·ℎ 𝐴 ) ) |
17 |
13 16
|
eqtr3d |
⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ·ℎ ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) = ( 1 ·ℎ 𝐴 ) ) |
18 |
|
ax-hvmulid |
⊢ ( 𝐴 ∈ ℋ → ( 1 ·ℎ 𝐴 ) = 𝐴 ) |
19 |
1 18
|
ax-mp |
⊢ ( 1 ·ℎ 𝐴 ) = 𝐴 |
20 |
17 19
|
eqtrdi |
⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ·ℎ ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) = 𝐴 ) |
21 |
20
|
adantr |
⊢ ( ( ( 𝐵 ·ih 𝐵 ) ≠ 0 ∧ 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) → ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ·ℎ ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) = 𝐴 ) |
22 |
8 21
|
eqtr3d |
⊢ ( ( ( 𝐵 ·ih 𝐵 ) ≠ 0 ∧ 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) → ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ·ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) = 𝐴 ) |
23 |
1 2
|
hicli |
⊢ ( 𝐴 ·ih 𝐵 ) ∈ ℂ |
24 |
|
ax-hvmulass |
⊢ ( ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ∈ ℂ ∧ ( 𝐴 ·ih 𝐵 ) ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) · ( 𝐴 ·ih 𝐵 ) ) ·ℎ 𝐵 ) = ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ·ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) |
25 |
23 2 24
|
mp3an23 |
⊢ ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ∈ ℂ → ( ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) · ( 𝐴 ·ih 𝐵 ) ) ·ℎ 𝐵 ) = ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ·ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) |
26 |
10 25
|
syl |
⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) · ( 𝐴 ·ih 𝐵 ) ) ·ℎ 𝐵 ) = ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ·ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) |
27 |
|
mulcom |
⊢ ( ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ∈ ℂ ∧ ( 𝐴 ·ih 𝐵 ) ∈ ℂ ) → ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) · ( 𝐴 ·ih 𝐵 ) ) = ( ( 𝐴 ·ih 𝐵 ) · ( 1 / ( 𝐵 ·ih 𝐵 ) ) ) ) |
28 |
10 23 27
|
sylancl |
⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) · ( 𝐴 ·ih 𝐵 ) ) = ( ( 𝐴 ·ih 𝐵 ) · ( 1 / ( 𝐵 ·ih 𝐵 ) ) ) ) |
29 |
23 9
|
divreczi |
⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) = ( ( 𝐴 ·ih 𝐵 ) · ( 1 / ( 𝐵 ·ih 𝐵 ) ) ) ) |
30 |
28 29
|
eqtr4d |
⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) · ( 𝐴 ·ih 𝐵 ) ) = ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ) |
31 |
30
|
oveq1d |
⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) · ( 𝐴 ·ih 𝐵 ) ) ·ℎ 𝐵 ) = ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ) |
32 |
26 31
|
eqtr3d |
⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ·ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) = ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ) |
33 |
32
|
adantr |
⊢ ( ( ( 𝐵 ·ih 𝐵 ) ≠ 0 ∧ 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) → ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ·ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) = ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ) |
34 |
22 33
|
eqtr3d |
⊢ ( ( ( 𝐵 ·ih 𝐵 ) ≠ 0 ∧ 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) → 𝐴 = ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ) |
35 |
34
|
ex |
⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → 𝐴 = ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ) ) |
36 |
23 9
|
divclzi |
⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ∈ ℂ ) |
37 |
2
|
elexi |
⊢ 𝐵 ∈ V |
38 |
37
|
snss |
⊢ ( 𝐵 ∈ ℋ ↔ { 𝐵 } ⊆ ℋ ) |
39 |
2 38
|
mpbi |
⊢ { 𝐵 } ⊆ ℋ |
40 |
|
occl |
⊢ ( { 𝐵 } ⊆ ℋ → ( ⊥ ‘ { 𝐵 } ) ∈ Cℋ ) |
41 |
39 40
|
ax-mp |
⊢ ( ⊥ ‘ { 𝐵 } ) ∈ Cℋ |
42 |
41
|
choccli |
⊢ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ∈ Cℋ |
43 |
42
|
chshii |
⊢ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ∈ Sℋ |
44 |
|
h1did |
⊢ ( 𝐵 ∈ ℋ → 𝐵 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) |
45 |
2 44
|
ax-mp |
⊢ 𝐵 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) |
46 |
|
shmulcl |
⊢ ( ( ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ∈ Sℋ ∧ ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ∈ ℂ ∧ 𝐵 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) → ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) |
47 |
43 45 46
|
mp3an13 |
⊢ ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ∈ ℂ → ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) |
48 |
36 47
|
syl |
⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) |
49 |
|
eleq1 |
⊢ ( 𝐴 = ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) → ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) ) |
50 |
48 49
|
syl5ibrcom |
⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( 𝐴 = ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) → 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) ) |
51 |
35 50
|
impbid |
⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ 𝐴 = ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ) ) |
52 |
5 51
|
sylbir |
⊢ ( 𝐵 ≠ 0ℎ → ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ 𝐴 = ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ) ) |