| Step | Hyp | Ref | Expression | 
						
							| 1 |  | h1de2.1 | ⊢ 𝐴  ∈   ℋ | 
						
							| 2 |  | h1de2.2 | ⊢ 𝐵  ∈   ℋ | 
						
							| 3 |  | his6 | ⊢ ( 𝐵  ∈   ℋ  →  ( ( 𝐵  ·ih  𝐵 )  =  0  ↔  𝐵  =  0ℎ ) ) | 
						
							| 4 | 2 3 | ax-mp | ⊢ ( ( 𝐵  ·ih  𝐵 )  =  0  ↔  𝐵  =  0ℎ ) | 
						
							| 5 | 4 | necon3bii | ⊢ ( ( 𝐵  ·ih  𝐵 )  ≠  0  ↔  𝐵  ≠  0ℎ ) | 
						
							| 6 | 1 2 | h1de2i | ⊢ ( 𝐴  ∈  ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) )  →  ( ( 𝐵  ·ih  𝐵 )  ·ℎ  𝐴 )  =  ( ( 𝐴  ·ih  𝐵 )  ·ℎ  𝐵 ) ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( ( 𝐵  ·ih  𝐵 )  ≠  0  ∧  𝐴  ∈  ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) )  →  ( ( 𝐵  ·ih  𝐵 )  ·ℎ  𝐴 )  =  ( ( 𝐴  ·ih  𝐵 )  ·ℎ  𝐵 ) ) | 
						
							| 8 | 7 | oveq2d | ⊢ ( ( ( 𝐵  ·ih  𝐵 )  ≠  0  ∧  𝐴  ∈  ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) )  →  ( ( 1  /  ( 𝐵  ·ih  𝐵 ) )  ·ℎ  ( ( 𝐵  ·ih  𝐵 )  ·ℎ  𝐴 ) )  =  ( ( 1  /  ( 𝐵  ·ih  𝐵 ) )  ·ℎ  ( ( 𝐴  ·ih  𝐵 )  ·ℎ  𝐵 ) ) ) | 
						
							| 9 | 2 2 | hicli | ⊢ ( 𝐵  ·ih  𝐵 )  ∈  ℂ | 
						
							| 10 | 9 | recclzi | ⊢ ( ( 𝐵  ·ih  𝐵 )  ≠  0  →  ( 1  /  ( 𝐵  ·ih  𝐵 ) )  ∈  ℂ ) | 
						
							| 11 |  | ax-hvmulass | ⊢ ( ( ( 1  /  ( 𝐵  ·ih  𝐵 ) )  ∈  ℂ  ∧  ( 𝐵  ·ih  𝐵 )  ∈  ℂ  ∧  𝐴  ∈   ℋ )  →  ( ( ( 1  /  ( 𝐵  ·ih  𝐵 ) )  ·  ( 𝐵  ·ih  𝐵 ) )  ·ℎ  𝐴 )  =  ( ( 1  /  ( 𝐵  ·ih  𝐵 ) )  ·ℎ  ( ( 𝐵  ·ih  𝐵 )  ·ℎ  𝐴 ) ) ) | 
						
							| 12 | 9 1 11 | mp3an23 | ⊢ ( ( 1  /  ( 𝐵  ·ih  𝐵 ) )  ∈  ℂ  →  ( ( ( 1  /  ( 𝐵  ·ih  𝐵 ) )  ·  ( 𝐵  ·ih  𝐵 ) )  ·ℎ  𝐴 )  =  ( ( 1  /  ( 𝐵  ·ih  𝐵 ) )  ·ℎ  ( ( 𝐵  ·ih  𝐵 )  ·ℎ  𝐴 ) ) ) | 
						
							| 13 | 10 12 | syl | ⊢ ( ( 𝐵  ·ih  𝐵 )  ≠  0  →  ( ( ( 1  /  ( 𝐵  ·ih  𝐵 ) )  ·  ( 𝐵  ·ih  𝐵 ) )  ·ℎ  𝐴 )  =  ( ( 1  /  ( 𝐵  ·ih  𝐵 ) )  ·ℎ  ( ( 𝐵  ·ih  𝐵 )  ·ℎ  𝐴 ) ) ) | 
						
							| 14 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 15 | 14 9 | divcan1zi | ⊢ ( ( 𝐵  ·ih  𝐵 )  ≠  0  →  ( ( 1  /  ( 𝐵  ·ih  𝐵 ) )  ·  ( 𝐵  ·ih  𝐵 ) )  =  1 ) | 
						
							| 16 | 15 | oveq1d | ⊢ ( ( 𝐵  ·ih  𝐵 )  ≠  0  →  ( ( ( 1  /  ( 𝐵  ·ih  𝐵 ) )  ·  ( 𝐵  ·ih  𝐵 ) )  ·ℎ  𝐴 )  =  ( 1  ·ℎ  𝐴 ) ) | 
						
							| 17 | 13 16 | eqtr3d | ⊢ ( ( 𝐵  ·ih  𝐵 )  ≠  0  →  ( ( 1  /  ( 𝐵  ·ih  𝐵 ) )  ·ℎ  ( ( 𝐵  ·ih  𝐵 )  ·ℎ  𝐴 ) )  =  ( 1  ·ℎ  𝐴 ) ) | 
						
							| 18 |  | ax-hvmulid | ⊢ ( 𝐴  ∈   ℋ  →  ( 1  ·ℎ  𝐴 )  =  𝐴 ) | 
						
							| 19 | 1 18 | ax-mp | ⊢ ( 1  ·ℎ  𝐴 )  =  𝐴 | 
						
							| 20 | 17 19 | eqtrdi | ⊢ ( ( 𝐵  ·ih  𝐵 )  ≠  0  →  ( ( 1  /  ( 𝐵  ·ih  𝐵 ) )  ·ℎ  ( ( 𝐵  ·ih  𝐵 )  ·ℎ  𝐴 ) )  =  𝐴 ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( ( 𝐵  ·ih  𝐵 )  ≠  0  ∧  𝐴  ∈  ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) )  →  ( ( 1  /  ( 𝐵  ·ih  𝐵 ) )  ·ℎ  ( ( 𝐵  ·ih  𝐵 )  ·ℎ  𝐴 ) )  =  𝐴 ) | 
						
							| 22 | 8 21 | eqtr3d | ⊢ ( ( ( 𝐵  ·ih  𝐵 )  ≠  0  ∧  𝐴  ∈  ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) )  →  ( ( 1  /  ( 𝐵  ·ih  𝐵 ) )  ·ℎ  ( ( 𝐴  ·ih  𝐵 )  ·ℎ  𝐵 ) )  =  𝐴 ) | 
						
							| 23 | 1 2 | hicli | ⊢ ( 𝐴  ·ih  𝐵 )  ∈  ℂ | 
						
							| 24 |  | ax-hvmulass | ⊢ ( ( ( 1  /  ( 𝐵  ·ih  𝐵 ) )  ∈  ℂ  ∧  ( 𝐴  ·ih  𝐵 )  ∈  ℂ  ∧  𝐵  ∈   ℋ )  →  ( ( ( 1  /  ( 𝐵  ·ih  𝐵 ) )  ·  ( 𝐴  ·ih  𝐵 ) )  ·ℎ  𝐵 )  =  ( ( 1  /  ( 𝐵  ·ih  𝐵 ) )  ·ℎ  ( ( 𝐴  ·ih  𝐵 )  ·ℎ  𝐵 ) ) ) | 
						
							| 25 | 23 2 24 | mp3an23 | ⊢ ( ( 1  /  ( 𝐵  ·ih  𝐵 ) )  ∈  ℂ  →  ( ( ( 1  /  ( 𝐵  ·ih  𝐵 ) )  ·  ( 𝐴  ·ih  𝐵 ) )  ·ℎ  𝐵 )  =  ( ( 1  /  ( 𝐵  ·ih  𝐵 ) )  ·ℎ  ( ( 𝐴  ·ih  𝐵 )  ·ℎ  𝐵 ) ) ) | 
						
							| 26 | 10 25 | syl | ⊢ ( ( 𝐵  ·ih  𝐵 )  ≠  0  →  ( ( ( 1  /  ( 𝐵  ·ih  𝐵 ) )  ·  ( 𝐴  ·ih  𝐵 ) )  ·ℎ  𝐵 )  =  ( ( 1  /  ( 𝐵  ·ih  𝐵 ) )  ·ℎ  ( ( 𝐴  ·ih  𝐵 )  ·ℎ  𝐵 ) ) ) | 
						
							| 27 |  | mulcom | ⊢ ( ( ( 1  /  ( 𝐵  ·ih  𝐵 ) )  ∈  ℂ  ∧  ( 𝐴  ·ih  𝐵 )  ∈  ℂ )  →  ( ( 1  /  ( 𝐵  ·ih  𝐵 ) )  ·  ( 𝐴  ·ih  𝐵 ) )  =  ( ( 𝐴  ·ih  𝐵 )  ·  ( 1  /  ( 𝐵  ·ih  𝐵 ) ) ) ) | 
						
							| 28 | 10 23 27 | sylancl | ⊢ ( ( 𝐵  ·ih  𝐵 )  ≠  0  →  ( ( 1  /  ( 𝐵  ·ih  𝐵 ) )  ·  ( 𝐴  ·ih  𝐵 ) )  =  ( ( 𝐴  ·ih  𝐵 )  ·  ( 1  /  ( 𝐵  ·ih  𝐵 ) ) ) ) | 
						
							| 29 | 23 9 | divreczi | ⊢ ( ( 𝐵  ·ih  𝐵 )  ≠  0  →  ( ( 𝐴  ·ih  𝐵 )  /  ( 𝐵  ·ih  𝐵 ) )  =  ( ( 𝐴  ·ih  𝐵 )  ·  ( 1  /  ( 𝐵  ·ih  𝐵 ) ) ) ) | 
						
							| 30 | 28 29 | eqtr4d | ⊢ ( ( 𝐵  ·ih  𝐵 )  ≠  0  →  ( ( 1  /  ( 𝐵  ·ih  𝐵 ) )  ·  ( 𝐴  ·ih  𝐵 ) )  =  ( ( 𝐴  ·ih  𝐵 )  /  ( 𝐵  ·ih  𝐵 ) ) ) | 
						
							| 31 | 30 | oveq1d | ⊢ ( ( 𝐵  ·ih  𝐵 )  ≠  0  →  ( ( ( 1  /  ( 𝐵  ·ih  𝐵 ) )  ·  ( 𝐴  ·ih  𝐵 ) )  ·ℎ  𝐵 )  =  ( ( ( 𝐴  ·ih  𝐵 )  /  ( 𝐵  ·ih  𝐵 ) )  ·ℎ  𝐵 ) ) | 
						
							| 32 | 26 31 | eqtr3d | ⊢ ( ( 𝐵  ·ih  𝐵 )  ≠  0  →  ( ( 1  /  ( 𝐵  ·ih  𝐵 ) )  ·ℎ  ( ( 𝐴  ·ih  𝐵 )  ·ℎ  𝐵 ) )  =  ( ( ( 𝐴  ·ih  𝐵 )  /  ( 𝐵  ·ih  𝐵 ) )  ·ℎ  𝐵 ) ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( ( 𝐵  ·ih  𝐵 )  ≠  0  ∧  𝐴  ∈  ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) )  →  ( ( 1  /  ( 𝐵  ·ih  𝐵 ) )  ·ℎ  ( ( 𝐴  ·ih  𝐵 )  ·ℎ  𝐵 ) )  =  ( ( ( 𝐴  ·ih  𝐵 )  /  ( 𝐵  ·ih  𝐵 ) )  ·ℎ  𝐵 ) ) | 
						
							| 34 | 22 33 | eqtr3d | ⊢ ( ( ( 𝐵  ·ih  𝐵 )  ≠  0  ∧  𝐴  ∈  ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) )  →  𝐴  =  ( ( ( 𝐴  ·ih  𝐵 )  /  ( 𝐵  ·ih  𝐵 ) )  ·ℎ  𝐵 ) ) | 
						
							| 35 | 34 | ex | ⊢ ( ( 𝐵  ·ih  𝐵 )  ≠  0  →  ( 𝐴  ∈  ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) )  →  𝐴  =  ( ( ( 𝐴  ·ih  𝐵 )  /  ( 𝐵  ·ih  𝐵 ) )  ·ℎ  𝐵 ) ) ) | 
						
							| 36 | 23 9 | divclzi | ⊢ ( ( 𝐵  ·ih  𝐵 )  ≠  0  →  ( ( 𝐴  ·ih  𝐵 )  /  ( 𝐵  ·ih  𝐵 ) )  ∈  ℂ ) | 
						
							| 37 | 2 | elexi | ⊢ 𝐵  ∈  V | 
						
							| 38 | 37 | snss | ⊢ ( 𝐵  ∈   ℋ  ↔  { 𝐵 }  ⊆   ℋ ) | 
						
							| 39 | 2 38 | mpbi | ⊢ { 𝐵 }  ⊆   ℋ | 
						
							| 40 |  | occl | ⊢ ( { 𝐵 }  ⊆   ℋ  →  ( ⊥ ‘ { 𝐵 } )  ∈   Cℋ  ) | 
						
							| 41 | 39 40 | ax-mp | ⊢ ( ⊥ ‘ { 𝐵 } )  ∈   Cℋ | 
						
							| 42 | 41 | choccli | ⊢ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) )  ∈   Cℋ | 
						
							| 43 | 42 | chshii | ⊢ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) )  ∈   Sℋ | 
						
							| 44 |  | h1did | ⊢ ( 𝐵  ∈   ℋ  →  𝐵  ∈  ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) | 
						
							| 45 | 2 44 | ax-mp | ⊢ 𝐵  ∈  ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) | 
						
							| 46 |  | shmulcl | ⊢ ( ( ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) )  ∈   Sℋ   ∧  ( ( 𝐴  ·ih  𝐵 )  /  ( 𝐵  ·ih  𝐵 ) )  ∈  ℂ  ∧  𝐵  ∈  ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) )  →  ( ( ( 𝐴  ·ih  𝐵 )  /  ( 𝐵  ·ih  𝐵 ) )  ·ℎ  𝐵 )  ∈  ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) | 
						
							| 47 | 43 45 46 | mp3an13 | ⊢ ( ( ( 𝐴  ·ih  𝐵 )  /  ( 𝐵  ·ih  𝐵 ) )  ∈  ℂ  →  ( ( ( 𝐴  ·ih  𝐵 )  /  ( 𝐵  ·ih  𝐵 ) )  ·ℎ  𝐵 )  ∈  ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) | 
						
							| 48 | 36 47 | syl | ⊢ ( ( 𝐵  ·ih  𝐵 )  ≠  0  →  ( ( ( 𝐴  ·ih  𝐵 )  /  ( 𝐵  ·ih  𝐵 ) )  ·ℎ  𝐵 )  ∈  ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) | 
						
							| 49 |  | eleq1 | ⊢ ( 𝐴  =  ( ( ( 𝐴  ·ih  𝐵 )  /  ( 𝐵  ·ih  𝐵 ) )  ·ℎ  𝐵 )  →  ( 𝐴  ∈  ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) )  ↔  ( ( ( 𝐴  ·ih  𝐵 )  /  ( 𝐵  ·ih  𝐵 ) )  ·ℎ  𝐵 )  ∈  ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) ) | 
						
							| 50 | 48 49 | syl5ibrcom | ⊢ ( ( 𝐵  ·ih  𝐵 )  ≠  0  →  ( 𝐴  =  ( ( ( 𝐴  ·ih  𝐵 )  /  ( 𝐵  ·ih  𝐵 ) )  ·ℎ  𝐵 )  →  𝐴  ∈  ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) ) | 
						
							| 51 | 35 50 | impbid | ⊢ ( ( 𝐵  ·ih  𝐵 )  ≠  0  →  ( 𝐴  ∈  ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) )  ↔  𝐴  =  ( ( ( 𝐴  ·ih  𝐵 )  /  ( 𝐵  ·ih  𝐵 ) )  ·ℎ  𝐵 ) ) ) | 
						
							| 52 | 5 51 | sylbir | ⊢ ( 𝐵  ≠  0ℎ  →  ( 𝐴  ∈  ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) )  ↔  𝐴  =  ( ( ( 𝐴  ·ih  𝐵 )  /  ( 𝐵  ·ih  𝐵 ) )  ·ℎ  𝐵 ) ) ) |