Step |
Hyp |
Ref |
Expression |
1 |
|
h1de2ct.1 |
⊢ 𝐵 ∈ ℋ |
2 |
|
snssi |
⊢ ( 𝐵 ∈ ℋ → { 𝐵 } ⊆ ℋ ) |
3 |
|
occl |
⊢ ( { 𝐵 } ⊆ ℋ → ( ⊥ ‘ { 𝐵 } ) ∈ Cℋ ) |
4 |
1 2 3
|
mp2b |
⊢ ( ⊥ ‘ { 𝐵 } ) ∈ Cℋ |
5 |
4
|
choccli |
⊢ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ∈ Cℋ |
6 |
5
|
cheli |
⊢ ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → 𝐴 ∈ ℋ ) |
7 |
|
hvmulcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝑥 ·ℎ 𝐵 ) ∈ ℋ ) |
8 |
1 7
|
mpan2 |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ·ℎ 𝐵 ) ∈ ℋ ) |
9 |
|
eleq1 |
⊢ ( 𝐴 = ( 𝑥 ·ℎ 𝐵 ) → ( 𝐴 ∈ ℋ ↔ ( 𝑥 ·ℎ 𝐵 ) ∈ ℋ ) ) |
10 |
8 9
|
syl5ibrcom |
⊢ ( 𝑥 ∈ ℂ → ( 𝐴 = ( 𝑥 ·ℎ 𝐵 ) → 𝐴 ∈ ℋ ) ) |
11 |
10
|
rexlimiv |
⊢ ( ∃ 𝑥 ∈ ℂ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) → 𝐴 ∈ ℋ ) |
12 |
|
eleq1 |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) ) |
13 |
|
eqeq1 |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ↔ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) = ( 𝑥 ·ℎ 𝐵 ) ) ) |
14 |
13
|
rexbidv |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ∃ 𝑥 ∈ ℂ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ↔ ∃ 𝑥 ∈ ℂ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) = ( 𝑥 ·ℎ 𝐵 ) ) ) |
15 |
12 14
|
bibi12d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ ∃ 𝑥 ∈ ℂ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) ↔ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ ∃ 𝑥 ∈ ℂ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) = ( 𝑥 ·ℎ 𝐵 ) ) ) ) |
16 |
|
ifhvhv0 |
⊢ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ℋ |
17 |
16 1
|
h1de2ctlem |
⊢ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ ∃ 𝑥 ∈ ℂ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) = ( 𝑥 ·ℎ 𝐵 ) ) |
18 |
15 17
|
dedth |
⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ ∃ 𝑥 ∈ ℂ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) ) |
19 |
6 11 18
|
pm5.21nii |
⊢ ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ ∃ 𝑥 ∈ ℂ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) |