Step |
Hyp |
Ref |
Expression |
1 |
|
h1de2.1 |
⊢ 𝐴 ∈ ℋ |
2 |
|
h1de2.2 |
⊢ 𝐵 ∈ ℋ |
3 |
2 2
|
hicli |
⊢ ( 𝐵 ·ih 𝐵 ) ∈ ℂ |
4 |
3 1
|
hvmulcli |
⊢ ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ∈ ℋ |
5 |
1 2
|
hicli |
⊢ ( 𝐴 ·ih 𝐵 ) ∈ ℂ |
6 |
5 2
|
hvmulcli |
⊢ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ∈ ℋ |
7 |
|
his2sub |
⊢ ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ∈ ℋ ∧ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ·ih 𝐴 ) = ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐴 ) − ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐴 ) ) ) |
8 |
4 6 1 7
|
mp3an |
⊢ ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ·ih 𝐴 ) = ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐴 ) − ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐴 ) ) |
9 |
|
ax-his3 |
⊢ ( ( ( 𝐵 ·ih 𝐵 ) ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐴 ) = ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐴 ) ) ) |
10 |
3 1 1 9
|
mp3an |
⊢ ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐴 ) = ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐴 ) ) |
11 |
1 1
|
hicli |
⊢ ( 𝐴 ·ih 𝐴 ) ∈ ℂ |
12 |
3 11
|
mulcomi |
⊢ ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐴 ) ) = ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) |
13 |
10 12
|
eqtri |
⊢ ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐴 ) = ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) |
14 |
|
ax-his3 |
⊢ ( ( ( 𝐴 ·ih 𝐵 ) ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐴 ) = ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) ) |
15 |
5 2 1 14
|
mp3an |
⊢ ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐴 ) = ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) |
16 |
13 15
|
oveq12i |
⊢ ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐴 ) − ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐴 ) ) = ( ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) − ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) ) |
17 |
8 16
|
eqtr2i |
⊢ ( ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) − ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) ) = ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ·ih 𝐴 ) |
18 |
|
his2sub |
⊢ ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ∈ ℋ ∧ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ·ih 𝐵 ) = ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐵 ) − ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐵 ) ) ) |
19 |
4 6 2 18
|
mp3an |
⊢ ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ·ih 𝐵 ) = ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐵 ) − ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐵 ) ) |
20 |
3 5
|
mulcomi |
⊢ ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐵 ) ) = ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐵 ) ) |
21 |
|
ax-his3 |
⊢ ( ( ( 𝐵 ·ih 𝐵 ) ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐵 ) = ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐵 ) ) ) |
22 |
3 1 2 21
|
mp3an |
⊢ ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐵 ) = ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐵 ) ) |
23 |
|
ax-his3 |
⊢ ( ( ( 𝐴 ·ih 𝐵 ) ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐵 ) = ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐵 ) ) ) |
24 |
5 2 2 23
|
mp3an |
⊢ ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐵 ) = ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐵 ) ) |
25 |
20 22 24
|
3eqtr4i |
⊢ ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐵 ) = ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐵 ) |
26 |
4 2
|
hicli |
⊢ ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐵 ) ∈ ℂ |
27 |
6 2
|
hicli |
⊢ ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐵 ) ∈ ℂ |
28 |
26 27
|
subeq0i |
⊢ ( ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐵 ) − ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐵 ) ) = 0 ↔ ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐵 ) = ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐵 ) ) |
29 |
25 28
|
mpbir |
⊢ ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐵 ) − ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐵 ) ) = 0 |
30 |
19 29
|
eqtri |
⊢ ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ·ih 𝐵 ) = 0 |
31 |
2
|
h1dei |
⊢ ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ ( 𝐴 ∈ ℋ ∧ ∀ 𝑥 ∈ ℋ ( ( 𝐵 ·ih 𝑥 ) = 0 → ( 𝐴 ·ih 𝑥 ) = 0 ) ) ) |
32 |
1 31
|
mpbiran |
⊢ ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( 𝐵 ·ih 𝑥 ) = 0 → ( 𝐴 ·ih 𝑥 ) = 0 ) ) |
33 |
4 6
|
hvsubcli |
⊢ ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ∈ ℋ |
34 |
|
oveq2 |
⊢ ( 𝑥 = ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) → ( 𝐵 ·ih 𝑥 ) = ( 𝐵 ·ih ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) ) |
35 |
34
|
eqeq1d |
⊢ ( 𝑥 = ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) → ( ( 𝐵 ·ih 𝑥 ) = 0 ↔ ( 𝐵 ·ih ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) = 0 ) ) |
36 |
|
oveq2 |
⊢ ( 𝑥 = ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) → ( 𝐴 ·ih 𝑥 ) = ( 𝐴 ·ih ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) ) |
37 |
36
|
eqeq1d |
⊢ ( 𝑥 = ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) → ( ( 𝐴 ·ih 𝑥 ) = 0 ↔ ( 𝐴 ·ih ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) = 0 ) ) |
38 |
35 37
|
imbi12d |
⊢ ( 𝑥 = ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) → ( ( ( 𝐵 ·ih 𝑥 ) = 0 → ( 𝐴 ·ih 𝑥 ) = 0 ) ↔ ( ( 𝐵 ·ih ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) = 0 → ( 𝐴 ·ih ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) = 0 ) ) ) |
39 |
38
|
rspcv |
⊢ ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ∈ ℋ → ( ∀ 𝑥 ∈ ℋ ( ( 𝐵 ·ih 𝑥 ) = 0 → ( 𝐴 ·ih 𝑥 ) = 0 ) → ( ( 𝐵 ·ih ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) = 0 → ( 𝐴 ·ih ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) = 0 ) ) ) |
40 |
33 39
|
ax-mp |
⊢ ( ∀ 𝑥 ∈ ℋ ( ( 𝐵 ·ih 𝑥 ) = 0 → ( 𝐴 ·ih 𝑥 ) = 0 ) → ( ( 𝐵 ·ih ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) = 0 → ( 𝐴 ·ih ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) = 0 ) ) |
41 |
32 40
|
sylbi |
⊢ ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( ( 𝐵 ·ih ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) = 0 → ( 𝐴 ·ih ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) = 0 ) ) |
42 |
|
orthcom |
⊢ ( ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ·ih 𝐵 ) = 0 ↔ ( 𝐵 ·ih ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) = 0 ) ) |
43 |
33 2 42
|
mp2an |
⊢ ( ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ·ih 𝐵 ) = 0 ↔ ( 𝐵 ·ih ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) = 0 ) |
44 |
|
orthcom |
⊢ ( ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ·ih 𝐴 ) = 0 ↔ ( 𝐴 ·ih ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) = 0 ) ) |
45 |
33 1 44
|
mp2an |
⊢ ( ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ·ih 𝐴 ) = 0 ↔ ( 𝐴 ·ih ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) = 0 ) |
46 |
41 43 45
|
3imtr4g |
⊢ ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ·ih 𝐵 ) = 0 → ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ·ih 𝐴 ) = 0 ) ) |
47 |
30 46
|
mpi |
⊢ ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ·ih 𝐴 ) = 0 ) |
48 |
17 47
|
syl5eq |
⊢ ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) − ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) ) = 0 ) |
49 |
11 3
|
mulcli |
⊢ ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) ∈ ℂ |
50 |
2 1
|
hicli |
⊢ ( 𝐵 ·ih 𝐴 ) ∈ ℂ |
51 |
5 50
|
mulcli |
⊢ ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) ∈ ℂ |
52 |
49 51
|
subeq0i |
⊢ ( ( ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) − ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) ) = 0 ↔ ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) = ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) ) |
53 |
48 52
|
sylib |
⊢ ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) = ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) ) |
54 |
53
|
eqcomd |
⊢ ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) = ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) ) |
55 |
1 2
|
bcseqi |
⊢ ( ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) = ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) ↔ ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) = ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) |
56 |
54 55
|
sylib |
⊢ ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) = ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) |