| Step | Hyp | Ref | Expression | 
						
							| 1 |  | h1deot.1 | ⊢ 𝐵  ∈   ℋ | 
						
							| 2 |  | snssi | ⊢ ( 𝐵  ∈   ℋ  →  { 𝐵 }  ⊆   ℋ ) | 
						
							| 3 |  | occl | ⊢ ( { 𝐵 }  ⊆   ℋ  →  ( ⊥ ‘ { 𝐵 } )  ∈   Cℋ  ) | 
						
							| 4 | 1 2 3 | mp2b | ⊢ ( ⊥ ‘ { 𝐵 } )  ∈   Cℋ | 
						
							| 5 | 4 | chssii | ⊢ ( ⊥ ‘ { 𝐵 } )  ⊆   ℋ | 
						
							| 6 |  | ocel | ⊢ ( ( ⊥ ‘ { 𝐵 } )  ⊆   ℋ  →  ( 𝐴  ∈  ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) )  ↔  ( 𝐴  ∈   ℋ  ∧  ∀ 𝑥  ∈  ( ⊥ ‘ { 𝐵 } ) ( 𝐴  ·ih  𝑥 )  =  0 ) ) ) | 
						
							| 7 | 5 6 | ax-mp | ⊢ ( 𝐴  ∈  ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) )  ↔  ( 𝐴  ∈   ℋ  ∧  ∀ 𝑥  ∈  ( ⊥ ‘ { 𝐵 } ) ( 𝐴  ·ih  𝑥 )  =  0 ) ) | 
						
							| 8 | 1 | h1deoi | ⊢ ( 𝑥  ∈  ( ⊥ ‘ { 𝐵 } )  ↔  ( 𝑥  ∈   ℋ  ∧  ( 𝑥  ·ih  𝐵 )  =  0 ) ) | 
						
							| 9 |  | orthcom | ⊢ ( ( 𝑥  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( ( 𝑥  ·ih  𝐵 )  =  0  ↔  ( 𝐵  ·ih  𝑥 )  =  0 ) ) | 
						
							| 10 | 1 9 | mpan2 | ⊢ ( 𝑥  ∈   ℋ  →  ( ( 𝑥  ·ih  𝐵 )  =  0  ↔  ( 𝐵  ·ih  𝑥 )  =  0 ) ) | 
						
							| 11 | 10 | pm5.32i | ⊢ ( ( 𝑥  ∈   ℋ  ∧  ( 𝑥  ·ih  𝐵 )  =  0 )  ↔  ( 𝑥  ∈   ℋ  ∧  ( 𝐵  ·ih  𝑥 )  =  0 ) ) | 
						
							| 12 | 8 11 | bitri | ⊢ ( 𝑥  ∈  ( ⊥ ‘ { 𝐵 } )  ↔  ( 𝑥  ∈   ℋ  ∧  ( 𝐵  ·ih  𝑥 )  =  0 ) ) | 
						
							| 13 | 12 | imbi1i | ⊢ ( ( 𝑥  ∈  ( ⊥ ‘ { 𝐵 } )  →  ( 𝐴  ·ih  𝑥 )  =  0 )  ↔  ( ( 𝑥  ∈   ℋ  ∧  ( 𝐵  ·ih  𝑥 )  =  0 )  →  ( 𝐴  ·ih  𝑥 )  =  0 ) ) | 
						
							| 14 |  | impexp | ⊢ ( ( ( 𝑥  ∈   ℋ  ∧  ( 𝐵  ·ih  𝑥 )  =  0 )  →  ( 𝐴  ·ih  𝑥 )  =  0 )  ↔  ( 𝑥  ∈   ℋ  →  ( ( 𝐵  ·ih  𝑥 )  =  0  →  ( 𝐴  ·ih  𝑥 )  =  0 ) ) ) | 
						
							| 15 | 13 14 | bitri | ⊢ ( ( 𝑥  ∈  ( ⊥ ‘ { 𝐵 } )  →  ( 𝐴  ·ih  𝑥 )  =  0 )  ↔  ( 𝑥  ∈   ℋ  →  ( ( 𝐵  ·ih  𝑥 )  =  0  →  ( 𝐴  ·ih  𝑥 )  =  0 ) ) ) | 
						
							| 16 | 15 | ralbii2 | ⊢ ( ∀ 𝑥  ∈  ( ⊥ ‘ { 𝐵 } ) ( 𝐴  ·ih  𝑥 )  =  0  ↔  ∀ 𝑥  ∈   ℋ ( ( 𝐵  ·ih  𝑥 )  =  0  →  ( 𝐴  ·ih  𝑥 )  =  0 ) ) | 
						
							| 17 | 16 | anbi2i | ⊢ ( ( 𝐴  ∈   ℋ  ∧  ∀ 𝑥  ∈  ( ⊥ ‘ { 𝐵 } ) ( 𝐴  ·ih  𝑥 )  =  0 )  ↔  ( 𝐴  ∈   ℋ  ∧  ∀ 𝑥  ∈   ℋ ( ( 𝐵  ·ih  𝑥 )  =  0  →  ( 𝐴  ·ih  𝑥 )  =  0 ) ) ) | 
						
							| 18 | 7 17 | bitri | ⊢ ( 𝐴  ∈  ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) )  ↔  ( 𝐴  ∈   ℋ  ∧  ∀ 𝑥  ∈   ℋ ( ( 𝐵  ·ih  𝑥 )  =  0  →  ( 𝐴  ·ih  𝑥 )  =  0 ) ) ) |