Step |
Hyp |
Ref |
Expression |
1 |
|
h1deot.1 |
⊢ 𝐵 ∈ ℋ |
2 |
|
snssi |
⊢ ( 𝐵 ∈ ℋ → { 𝐵 } ⊆ ℋ ) |
3 |
|
occl |
⊢ ( { 𝐵 } ⊆ ℋ → ( ⊥ ‘ { 𝐵 } ) ∈ Cℋ ) |
4 |
1 2 3
|
mp2b |
⊢ ( ⊥ ‘ { 𝐵 } ) ∈ Cℋ |
5 |
4
|
chssii |
⊢ ( ⊥ ‘ { 𝐵 } ) ⊆ ℋ |
6 |
|
ocel |
⊢ ( ( ⊥ ‘ { 𝐵 } ) ⊆ ℋ → ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ ( 𝐴 ∈ ℋ ∧ ∀ 𝑥 ∈ ( ⊥ ‘ { 𝐵 } ) ( 𝐴 ·ih 𝑥 ) = 0 ) ) ) |
7 |
5 6
|
ax-mp |
⊢ ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ ( 𝐴 ∈ ℋ ∧ ∀ 𝑥 ∈ ( ⊥ ‘ { 𝐵 } ) ( 𝐴 ·ih 𝑥 ) = 0 ) ) |
8 |
1
|
h1deoi |
⊢ ( 𝑥 ∈ ( ⊥ ‘ { 𝐵 } ) ↔ ( 𝑥 ∈ ℋ ∧ ( 𝑥 ·ih 𝐵 ) = 0 ) ) |
9 |
|
orthcom |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝑥 ·ih 𝐵 ) = 0 ↔ ( 𝐵 ·ih 𝑥 ) = 0 ) ) |
10 |
1 9
|
mpan2 |
⊢ ( 𝑥 ∈ ℋ → ( ( 𝑥 ·ih 𝐵 ) = 0 ↔ ( 𝐵 ·ih 𝑥 ) = 0 ) ) |
11 |
10
|
pm5.32i |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑥 ·ih 𝐵 ) = 0 ) ↔ ( 𝑥 ∈ ℋ ∧ ( 𝐵 ·ih 𝑥 ) = 0 ) ) |
12 |
8 11
|
bitri |
⊢ ( 𝑥 ∈ ( ⊥ ‘ { 𝐵 } ) ↔ ( 𝑥 ∈ ℋ ∧ ( 𝐵 ·ih 𝑥 ) = 0 ) ) |
13 |
12
|
imbi1i |
⊢ ( ( 𝑥 ∈ ( ⊥ ‘ { 𝐵 } ) → ( 𝐴 ·ih 𝑥 ) = 0 ) ↔ ( ( 𝑥 ∈ ℋ ∧ ( 𝐵 ·ih 𝑥 ) = 0 ) → ( 𝐴 ·ih 𝑥 ) = 0 ) ) |
14 |
|
impexp |
⊢ ( ( ( 𝑥 ∈ ℋ ∧ ( 𝐵 ·ih 𝑥 ) = 0 ) → ( 𝐴 ·ih 𝑥 ) = 0 ) ↔ ( 𝑥 ∈ ℋ → ( ( 𝐵 ·ih 𝑥 ) = 0 → ( 𝐴 ·ih 𝑥 ) = 0 ) ) ) |
15 |
13 14
|
bitri |
⊢ ( ( 𝑥 ∈ ( ⊥ ‘ { 𝐵 } ) → ( 𝐴 ·ih 𝑥 ) = 0 ) ↔ ( 𝑥 ∈ ℋ → ( ( 𝐵 ·ih 𝑥 ) = 0 → ( 𝐴 ·ih 𝑥 ) = 0 ) ) ) |
16 |
15
|
ralbii2 |
⊢ ( ∀ 𝑥 ∈ ( ⊥ ‘ { 𝐵 } ) ( 𝐴 ·ih 𝑥 ) = 0 ↔ ∀ 𝑥 ∈ ℋ ( ( 𝐵 ·ih 𝑥 ) = 0 → ( 𝐴 ·ih 𝑥 ) = 0 ) ) |
17 |
16
|
anbi2i |
⊢ ( ( 𝐴 ∈ ℋ ∧ ∀ 𝑥 ∈ ( ⊥ ‘ { 𝐵 } ) ( 𝐴 ·ih 𝑥 ) = 0 ) ↔ ( 𝐴 ∈ ℋ ∧ ∀ 𝑥 ∈ ℋ ( ( 𝐵 ·ih 𝑥 ) = 0 → ( 𝐴 ·ih 𝑥 ) = 0 ) ) ) |
18 |
7 17
|
bitri |
⊢ ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ ( 𝐴 ∈ ℋ ∧ ∀ 𝑥 ∈ ℋ ( ( 𝐵 ·ih 𝑥 ) = 0 → ( 𝐴 ·ih 𝑥 ) = 0 ) ) ) |