| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							h1deot.1 | 
							⊢ 𝐵  ∈   ℋ  | 
						
						
							| 2 | 
							
								
							 | 
							snssi | 
							⊢ ( 𝐵  ∈   ℋ  →  { 𝐵 }  ⊆   ℋ )  | 
						
						
							| 3 | 
							
								
							 | 
							occl | 
							⊢ ( { 𝐵 }  ⊆   ℋ  →  ( ⊥ ‘ { 𝐵 } )  ∈   Cℋ  )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							mp2b | 
							⊢ ( ⊥ ‘ { 𝐵 } )  ∈   Cℋ   | 
						
						
							| 5 | 
							
								4
							 | 
							chssii | 
							⊢ ( ⊥ ‘ { 𝐵 } )  ⊆   ℋ  | 
						
						
							| 6 | 
							
								
							 | 
							ocel | 
							⊢ ( ( ⊥ ‘ { 𝐵 } )  ⊆   ℋ  →  ( 𝐴  ∈  ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) )  ↔  ( 𝐴  ∈   ℋ  ∧  ∀ 𝑥  ∈  ( ⊥ ‘ { 𝐵 } ) ( 𝐴  ·ih  𝑥 )  =  0 ) ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							ax-mp | 
							⊢ ( 𝐴  ∈  ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) )  ↔  ( 𝐴  ∈   ℋ  ∧  ∀ 𝑥  ∈  ( ⊥ ‘ { 𝐵 } ) ( 𝐴  ·ih  𝑥 )  =  0 ) )  | 
						
						
							| 8 | 
							
								1
							 | 
							h1deoi | 
							⊢ ( 𝑥  ∈  ( ⊥ ‘ { 𝐵 } )  ↔  ( 𝑥  ∈   ℋ  ∧  ( 𝑥  ·ih  𝐵 )  =  0 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							orthcom | 
							⊢ ( ( 𝑥  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( ( 𝑥  ·ih  𝐵 )  =  0  ↔  ( 𝐵  ·ih  𝑥 )  =  0 ) )  | 
						
						
							| 10 | 
							
								1 9
							 | 
							mpan2 | 
							⊢ ( 𝑥  ∈   ℋ  →  ( ( 𝑥  ·ih  𝐵 )  =  0  ↔  ( 𝐵  ·ih  𝑥 )  =  0 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							pm5.32i | 
							⊢ ( ( 𝑥  ∈   ℋ  ∧  ( 𝑥  ·ih  𝐵 )  =  0 )  ↔  ( 𝑥  ∈   ℋ  ∧  ( 𝐵  ·ih  𝑥 )  =  0 ) )  | 
						
						
							| 12 | 
							
								8 11
							 | 
							bitri | 
							⊢ ( 𝑥  ∈  ( ⊥ ‘ { 𝐵 } )  ↔  ( 𝑥  ∈   ℋ  ∧  ( 𝐵  ·ih  𝑥 )  =  0 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							imbi1i | 
							⊢ ( ( 𝑥  ∈  ( ⊥ ‘ { 𝐵 } )  →  ( 𝐴  ·ih  𝑥 )  =  0 )  ↔  ( ( 𝑥  ∈   ℋ  ∧  ( 𝐵  ·ih  𝑥 )  =  0 )  →  ( 𝐴  ·ih  𝑥 )  =  0 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							impexp | 
							⊢ ( ( ( 𝑥  ∈   ℋ  ∧  ( 𝐵  ·ih  𝑥 )  =  0 )  →  ( 𝐴  ·ih  𝑥 )  =  0 )  ↔  ( 𝑥  ∈   ℋ  →  ( ( 𝐵  ·ih  𝑥 )  =  0  →  ( 𝐴  ·ih  𝑥 )  =  0 ) ) )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							bitri | 
							⊢ ( ( 𝑥  ∈  ( ⊥ ‘ { 𝐵 } )  →  ( 𝐴  ·ih  𝑥 )  =  0 )  ↔  ( 𝑥  ∈   ℋ  →  ( ( 𝐵  ·ih  𝑥 )  =  0  →  ( 𝐴  ·ih  𝑥 )  =  0 ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							ralbii2 | 
							⊢ ( ∀ 𝑥  ∈  ( ⊥ ‘ { 𝐵 } ) ( 𝐴  ·ih  𝑥 )  =  0  ↔  ∀ 𝑥  ∈   ℋ ( ( 𝐵  ·ih  𝑥 )  =  0  →  ( 𝐴  ·ih  𝑥 )  =  0 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							anbi2i | 
							⊢ ( ( 𝐴  ∈   ℋ  ∧  ∀ 𝑥  ∈  ( ⊥ ‘ { 𝐵 } ) ( 𝐴  ·ih  𝑥 )  =  0 )  ↔  ( 𝐴  ∈   ℋ  ∧  ∀ 𝑥  ∈   ℋ ( ( 𝐵  ·ih  𝑥 )  =  0  →  ( 𝐴  ·ih  𝑥 )  =  0 ) ) )  | 
						
						
							| 18 | 
							
								7 17
							 | 
							bitri | 
							⊢ ( 𝐴  ∈  ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) )  ↔  ( 𝐴  ∈   ℋ  ∧  ∀ 𝑥  ∈   ℋ ( ( 𝐵  ·ih  𝑥 )  =  0  →  ( 𝐴  ·ih  𝑥 )  =  0 ) ) )  |