Step |
Hyp |
Ref |
Expression |
1 |
|
h1deot.1 |
⊢ 𝐵 ∈ ℋ |
2 |
|
snssi |
⊢ ( 𝐵 ∈ ℋ → { 𝐵 } ⊆ ℋ ) |
3 |
|
ocel |
⊢ ( { 𝐵 } ⊆ ℋ → ( 𝐴 ∈ ( ⊥ ‘ { 𝐵 } ) ↔ ( 𝐴 ∈ ℋ ∧ ∀ 𝑥 ∈ { 𝐵 } ( 𝐴 ·ih 𝑥 ) = 0 ) ) ) |
4 |
1 2 3
|
mp2b |
⊢ ( 𝐴 ∈ ( ⊥ ‘ { 𝐵 } ) ↔ ( 𝐴 ∈ ℋ ∧ ∀ 𝑥 ∈ { 𝐵 } ( 𝐴 ·ih 𝑥 ) = 0 ) ) |
5 |
1
|
elexi |
⊢ 𝐵 ∈ V |
6 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐴 ·ih 𝑥 ) = ( 𝐴 ·ih 𝐵 ) ) |
7 |
6
|
eqeq1d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ·ih 𝑥 ) = 0 ↔ ( 𝐴 ·ih 𝐵 ) = 0 ) ) |
8 |
5 7
|
ralsn |
⊢ ( ∀ 𝑥 ∈ { 𝐵 } ( 𝐴 ·ih 𝑥 ) = 0 ↔ ( 𝐴 ·ih 𝐵 ) = 0 ) |
9 |
8
|
anbi2i |
⊢ ( ( 𝐴 ∈ ℋ ∧ ∀ 𝑥 ∈ { 𝐵 } ( 𝐴 ·ih 𝑥 ) = 0 ) ↔ ( 𝐴 ∈ ℋ ∧ ( 𝐴 ·ih 𝐵 ) = 0 ) ) |
10 |
4 9
|
bitri |
⊢ ( 𝐴 ∈ ( ⊥ ‘ { 𝐵 } ) ↔ ( 𝐴 ∈ ℋ ∧ ( 𝐴 ·ih 𝐵 ) = 0 ) ) |