Metamath Proof Explorer


Theorem h1did

Description: A generating vector belongs to the 1-dimensional subspace it generates. (Contributed by NM, 22-Jul-2001) (New usage is discouraged.)

Ref Expression
Assertion h1did ( 𝐴 ∈ ℋ → 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) )

Proof

Step Hyp Ref Expression
1 snssi ( 𝐴 ∈ ℋ → { 𝐴 } ⊆ ℋ )
2 ococss ( { 𝐴 } ⊆ ℋ → { 𝐴 } ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) )
3 1 2 syl ( 𝐴 ∈ ℋ → { 𝐴 } ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) )
4 snssg ( 𝐴 ∈ ℋ → ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ↔ { 𝐴 } ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ) )
5 3 4 mpbird ( 𝐴 ∈ ℋ → 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) )