Metamath Proof Explorer


Theorem h1dn0

Description: A nonzero vector generates a (nonzero) 1-dimensional subspace. (Contributed by NM, 22-Jul-2001) (New usage is discouraged.)

Ref Expression
Assertion h1dn0 ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0 ) → ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ≠ 0 )

Proof

Step Hyp Ref Expression
1 h1did ( 𝐴 ∈ ℋ → 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) )
2 eleq2 ( ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) = 0 → ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ↔ 𝐴 ∈ 0 ) )
3 1 2 syl5ibcom ( 𝐴 ∈ ℋ → ( ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) = 0𝐴 ∈ 0 ) )
4 elch0 ( 𝐴 ∈ 0𝐴 = 0 )
5 3 4 syl6ib ( 𝐴 ∈ ℋ → ( ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) = 0𝐴 = 0 ) )
6 5 necon3d ( 𝐴 ∈ ℋ → ( 𝐴 ≠ 0 → ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ≠ 0 ) )
7 6 imp ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0 ) → ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ≠ 0 )