Description: A nonzero vector generates a (nonzero) 1-dimensional subspace. (Contributed by NM, 22-Jul-2001) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | h1dn0 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ≠ 0ℋ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | h1did | ⊢ ( 𝐴 ∈ ℋ → 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ) | |
2 | eleq2 | ⊢ ( ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) = 0ℋ → ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ↔ 𝐴 ∈ 0ℋ ) ) | |
3 | 1 2 | syl5ibcom | ⊢ ( 𝐴 ∈ ℋ → ( ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) = 0ℋ → 𝐴 ∈ 0ℋ ) ) |
4 | elch0 | ⊢ ( 𝐴 ∈ 0ℋ ↔ 𝐴 = 0ℎ ) | |
5 | 3 4 | syl6ib | ⊢ ( 𝐴 ∈ ℋ → ( ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) = 0ℋ → 𝐴 = 0ℎ ) ) |
6 | 5 | necon3d | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ≠ 0ℎ → ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ≠ 0ℋ ) ) |
7 | 6 | imp | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ≠ 0ℋ ) |