Metamath Proof Explorer


Theorem h2hcau

Description: The Cauchy sequences of Hilbert space. (Contributed by NM, 6-Jun-2008) (Revised by Mario Carneiro, 13-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses h2hc.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
h2hc.2 𝑈 ∈ NrmCVec
h2hc.3 ℋ = ( BaseSet ‘ 𝑈 )
h2hc.4 𝐷 = ( IndMet ‘ 𝑈 )
Assertion h2hcau Cauchy = ( ( Cau ‘ 𝐷 ) ∩ ( ℋ ↑m ℕ ) )

Proof

Step Hyp Ref Expression
1 h2hc.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
2 h2hc.2 𝑈 ∈ NrmCVec
3 h2hc.3 ℋ = ( BaseSet ‘ 𝑈 )
4 h2hc.4 𝐷 = ( IndMet ‘ 𝑈 )
5 df-rab { 𝑓 ∈ ( ℋ ↑m ℕ ) ∣ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( norm ‘ ( ( 𝑓𝑗 ) − ( 𝑓𝑘 ) ) ) < 𝑥 } = { 𝑓 ∣ ( 𝑓 ∈ ( ℋ ↑m ℕ ) ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( norm ‘ ( ( 𝑓𝑗 ) − ( 𝑓𝑘 ) ) ) < 𝑥 ) }
6 df-hcau Cauchy = { 𝑓 ∈ ( ℋ ↑m ℕ ) ∣ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( norm ‘ ( ( 𝑓𝑗 ) − ( 𝑓𝑘 ) ) ) < 𝑥 }
7 elin ( 𝑓 ∈ ( ( Cau ‘ 𝐷 ) ∩ ( ℋ ↑m ℕ ) ) ↔ ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑓 ∈ ( ℋ ↑m ℕ ) ) )
8 ancom ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑓 ∈ ( ℋ ↑m ℕ ) ) ↔ ( 𝑓 ∈ ( ℋ ↑m ℕ ) ∧ 𝑓 ∈ ( Cau ‘ 𝐷 ) ) )
9 3 hlex ℋ ∈ V
10 nnex ℕ ∈ V
11 9 10 elmap ( 𝑓 ∈ ( ℋ ↑m ℕ ) ↔ 𝑓 : ℕ ⟶ ℋ )
12 nnuz ℕ = ( ℤ ‘ 1 )
13 3 4 imsxmet ( 𝑈 ∈ NrmCVec → 𝐷 ∈ ( ∞Met ‘ ℋ ) )
14 2 13 mp1i ( 𝑓 : ℕ ⟶ ℋ → 𝐷 ∈ ( ∞Met ‘ ℋ ) )
15 1zzd ( 𝑓 : ℕ ⟶ ℋ → 1 ∈ ℤ )
16 eqidd ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑘 ∈ ℕ ) → ( 𝑓𝑘 ) = ( 𝑓𝑘 ) )
17 eqidd ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑗 ∈ ℕ ) → ( 𝑓𝑗 ) = ( 𝑓𝑗 ) )
18 id ( 𝑓 : ℕ ⟶ ℋ → 𝑓 : ℕ ⟶ ℋ )
19 12 14 15 16 17 18 iscauf ( 𝑓 : ℕ ⟶ ℋ → ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝑓𝑗 ) 𝐷 ( 𝑓𝑘 ) ) < 𝑥 ) )
20 ffvelrn ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑗 ∈ ℕ ) → ( 𝑓𝑗 ) ∈ ℋ )
21 20 adantr ( ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑗 ) ) → ( 𝑓𝑗 ) ∈ ℋ )
22 eluznn ( ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ𝑗 ) ) → 𝑘 ∈ ℕ )
23 ffvelrn ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑘 ∈ ℕ ) → ( 𝑓𝑘 ) ∈ ℋ )
24 22 23 sylan2 ( ( 𝑓 : ℕ ⟶ ℋ ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ𝑗 ) ) ) → ( 𝑓𝑘 ) ∈ ℋ )
25 24 anassrs ( ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑗 ) ) → ( 𝑓𝑘 ) ∈ ℋ )
26 1 2 3 4 h2hmetdval ( ( ( 𝑓𝑗 ) ∈ ℋ ∧ ( 𝑓𝑘 ) ∈ ℋ ) → ( ( 𝑓𝑗 ) 𝐷 ( 𝑓𝑘 ) ) = ( norm ‘ ( ( 𝑓𝑗 ) − ( 𝑓𝑘 ) ) ) )
27 21 25 26 syl2anc ( ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑗 ) ) → ( ( 𝑓𝑗 ) 𝐷 ( 𝑓𝑘 ) ) = ( norm ‘ ( ( 𝑓𝑗 ) − ( 𝑓𝑘 ) ) ) )
28 27 breq1d ( ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑗 ) ) → ( ( ( 𝑓𝑗 ) 𝐷 ( 𝑓𝑘 ) ) < 𝑥 ↔ ( norm ‘ ( ( 𝑓𝑗 ) − ( 𝑓𝑘 ) ) ) < 𝑥 ) )
29 28 ralbidva ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑗 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝑓𝑗 ) 𝐷 ( 𝑓𝑘 ) ) < 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( norm ‘ ( ( 𝑓𝑗 ) − ( 𝑓𝑘 ) ) ) < 𝑥 ) )
30 29 rexbidva ( 𝑓 : ℕ ⟶ ℋ → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝑓𝑗 ) 𝐷 ( 𝑓𝑘 ) ) < 𝑥 ↔ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( norm ‘ ( ( 𝑓𝑗 ) − ( 𝑓𝑘 ) ) ) < 𝑥 ) )
31 30 ralbidv ( 𝑓 : ℕ ⟶ ℋ → ( ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝑓𝑗 ) 𝐷 ( 𝑓𝑘 ) ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( norm ‘ ( ( 𝑓𝑗 ) − ( 𝑓𝑘 ) ) ) < 𝑥 ) )
32 19 31 bitrd ( 𝑓 : ℕ ⟶ ℋ → ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( norm ‘ ( ( 𝑓𝑗 ) − ( 𝑓𝑘 ) ) ) < 𝑥 ) )
33 11 32 sylbi ( 𝑓 ∈ ( ℋ ↑m ℕ ) → ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( norm ‘ ( ( 𝑓𝑗 ) − ( 𝑓𝑘 ) ) ) < 𝑥 ) )
34 33 pm5.32i ( ( 𝑓 ∈ ( ℋ ↑m ℕ ) ∧ 𝑓 ∈ ( Cau ‘ 𝐷 ) ) ↔ ( 𝑓 ∈ ( ℋ ↑m ℕ ) ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( norm ‘ ( ( 𝑓𝑗 ) − ( 𝑓𝑘 ) ) ) < 𝑥 ) )
35 7 8 34 3bitri ( 𝑓 ∈ ( ( Cau ‘ 𝐷 ) ∩ ( ℋ ↑m ℕ ) ) ↔ ( 𝑓 ∈ ( ℋ ↑m ℕ ) ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( norm ‘ ( ( 𝑓𝑗 ) − ( 𝑓𝑘 ) ) ) < 𝑥 ) )
36 35 abbi2i ( ( Cau ‘ 𝐷 ) ∩ ( ℋ ↑m ℕ ) ) = { 𝑓 ∣ ( 𝑓 ∈ ( ℋ ↑m ℕ ) ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( norm ‘ ( ( 𝑓𝑗 ) − ( 𝑓𝑘 ) ) ) < 𝑥 ) }
37 5 6 36 3eqtr4i Cauchy = ( ( Cau ‘ 𝐷 ) ∩ ( ℋ ↑m ℕ ) )