Step |
Hyp |
Ref |
Expression |
1 |
|
h2hc.1 |
⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 |
2 |
|
h2hc.2 |
⊢ 𝑈 ∈ NrmCVec |
3 |
|
h2hc.3 |
⊢ ℋ = ( BaseSet ‘ 𝑈 ) |
4 |
|
h2hc.4 |
⊢ 𝐷 = ( IndMet ‘ 𝑈 ) |
5 |
|
df-rab |
⊢ { 𝑓 ∈ ( ℋ ↑m ℕ ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑗 ) −ℎ ( 𝑓 ‘ 𝑘 ) ) ) < 𝑥 } = { 𝑓 ∣ ( 𝑓 ∈ ( ℋ ↑m ℕ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑗 ) −ℎ ( 𝑓 ‘ 𝑘 ) ) ) < 𝑥 ) } |
6 |
|
df-hcau |
⊢ Cauchy = { 𝑓 ∈ ( ℋ ↑m ℕ ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑗 ) −ℎ ( 𝑓 ‘ 𝑘 ) ) ) < 𝑥 } |
7 |
|
elin |
⊢ ( 𝑓 ∈ ( ( Cau ‘ 𝐷 ) ∩ ( ℋ ↑m ℕ ) ) ↔ ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑓 ∈ ( ℋ ↑m ℕ ) ) ) |
8 |
|
ancom |
⊢ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑓 ∈ ( ℋ ↑m ℕ ) ) ↔ ( 𝑓 ∈ ( ℋ ↑m ℕ ) ∧ 𝑓 ∈ ( Cau ‘ 𝐷 ) ) ) |
9 |
3
|
hlex |
⊢ ℋ ∈ V |
10 |
|
nnex |
⊢ ℕ ∈ V |
11 |
9 10
|
elmap |
⊢ ( 𝑓 ∈ ( ℋ ↑m ℕ ) ↔ 𝑓 : ℕ ⟶ ℋ ) |
12 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
13 |
3 4
|
imsxmet |
⊢ ( 𝑈 ∈ NrmCVec → 𝐷 ∈ ( ∞Met ‘ ℋ ) ) |
14 |
2 13
|
mp1i |
⊢ ( 𝑓 : ℕ ⟶ ℋ → 𝐷 ∈ ( ∞Met ‘ ℋ ) ) |
15 |
|
1zzd |
⊢ ( 𝑓 : ℕ ⟶ ℋ → 1 ∈ ℤ ) |
16 |
|
eqidd |
⊢ ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑘 ∈ ℕ ) → ( 𝑓 ‘ 𝑘 ) = ( 𝑓 ‘ 𝑘 ) ) |
17 |
|
eqidd |
⊢ ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑗 ∈ ℕ ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑓 ‘ 𝑗 ) ) |
18 |
|
id |
⊢ ( 𝑓 : ℕ ⟶ ℋ → 𝑓 : ℕ ⟶ ℋ ) |
19 |
12 14 15 16 17 18
|
iscauf |
⊢ ( 𝑓 : ℕ ⟶ ℋ → ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑗 ) 𝐷 ( 𝑓 ‘ 𝑘 ) ) < 𝑥 ) ) |
20 |
|
ffvelrn |
⊢ ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑗 ∈ ℕ ) → ( 𝑓 ‘ 𝑗 ) ∈ ℋ ) |
21 |
20
|
adantr |
⊢ ( ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝑓 ‘ 𝑗 ) ∈ ℋ ) |
22 |
|
eluznn |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ ℕ ) |
23 |
|
ffvelrn |
⊢ ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑘 ∈ ℕ ) → ( 𝑓 ‘ 𝑘 ) ∈ ℋ ) |
24 |
22 23
|
sylan2 |
⊢ ( ( 𝑓 : ℕ ⟶ ℋ ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑓 ‘ 𝑘 ) ∈ ℋ ) |
25 |
24
|
anassrs |
⊢ ( ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝑓 ‘ 𝑘 ) ∈ ℋ ) |
26 |
1 2 3 4
|
h2hmetdval |
⊢ ( ( ( 𝑓 ‘ 𝑗 ) ∈ ℋ ∧ ( 𝑓 ‘ 𝑘 ) ∈ ℋ ) → ( ( 𝑓 ‘ 𝑗 ) 𝐷 ( 𝑓 ‘ 𝑘 ) ) = ( normℎ ‘ ( ( 𝑓 ‘ 𝑗 ) −ℎ ( 𝑓 ‘ 𝑘 ) ) ) ) |
27 |
21 25 26
|
syl2anc |
⊢ ( ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝑓 ‘ 𝑗 ) 𝐷 ( 𝑓 ‘ 𝑘 ) ) = ( normℎ ‘ ( ( 𝑓 ‘ 𝑗 ) −ℎ ( 𝑓 ‘ 𝑘 ) ) ) ) |
28 |
27
|
breq1d |
⊢ ( ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝑓 ‘ 𝑗 ) 𝐷 ( 𝑓 ‘ 𝑘 ) ) < 𝑥 ↔ ( normℎ ‘ ( ( 𝑓 ‘ 𝑗 ) −ℎ ( 𝑓 ‘ 𝑘 ) ) ) < 𝑥 ) ) |
29 |
28
|
ralbidva |
⊢ ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑗 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑗 ) 𝐷 ( 𝑓 ‘ 𝑘 ) ) < 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑗 ) −ℎ ( 𝑓 ‘ 𝑘 ) ) ) < 𝑥 ) ) |
30 |
29
|
rexbidva |
⊢ ( 𝑓 : ℕ ⟶ ℋ → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑗 ) 𝐷 ( 𝑓 ‘ 𝑘 ) ) < 𝑥 ↔ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑗 ) −ℎ ( 𝑓 ‘ 𝑘 ) ) ) < 𝑥 ) ) |
31 |
30
|
ralbidv |
⊢ ( 𝑓 : ℕ ⟶ ℋ → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑗 ) 𝐷 ( 𝑓 ‘ 𝑘 ) ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑗 ) −ℎ ( 𝑓 ‘ 𝑘 ) ) ) < 𝑥 ) ) |
32 |
19 31
|
bitrd |
⊢ ( 𝑓 : ℕ ⟶ ℋ → ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑗 ) −ℎ ( 𝑓 ‘ 𝑘 ) ) ) < 𝑥 ) ) |
33 |
11 32
|
sylbi |
⊢ ( 𝑓 ∈ ( ℋ ↑m ℕ ) → ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑗 ) −ℎ ( 𝑓 ‘ 𝑘 ) ) ) < 𝑥 ) ) |
34 |
33
|
pm5.32i |
⊢ ( ( 𝑓 ∈ ( ℋ ↑m ℕ ) ∧ 𝑓 ∈ ( Cau ‘ 𝐷 ) ) ↔ ( 𝑓 ∈ ( ℋ ↑m ℕ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑗 ) −ℎ ( 𝑓 ‘ 𝑘 ) ) ) < 𝑥 ) ) |
35 |
7 8 34
|
3bitri |
⊢ ( 𝑓 ∈ ( ( Cau ‘ 𝐷 ) ∩ ( ℋ ↑m ℕ ) ) ↔ ( 𝑓 ∈ ( ℋ ↑m ℕ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑗 ) −ℎ ( 𝑓 ‘ 𝑘 ) ) ) < 𝑥 ) ) |
36 |
35
|
abbi2i |
⊢ ( ( Cau ‘ 𝐷 ) ∩ ( ℋ ↑m ℕ ) ) = { 𝑓 ∣ ( 𝑓 ∈ ( ℋ ↑m ℕ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑗 ) −ℎ ( 𝑓 ‘ 𝑘 ) ) ) < 𝑥 ) } |
37 |
5 6 36
|
3eqtr4i |
⊢ Cauchy = ( ( Cau ‘ 𝐷 ) ∩ ( ℋ ↑m ℕ ) ) |