| Step |
Hyp |
Ref |
Expression |
| 1 |
|
h2hl.1 |
⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 |
| 2 |
|
h2hl.2 |
⊢ 𝑈 ∈ NrmCVec |
| 3 |
|
h2hl.3 |
⊢ ℋ = ( BaseSet ‘ 𝑈 ) |
| 4 |
|
h2hl.4 |
⊢ 𝐷 = ( IndMet ‘ 𝑈 ) |
| 5 |
|
h2hl.5 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
| 6 |
|
df-hlim |
⊢ ⇝𝑣 = { 〈 𝑓 , 𝑥 〉 ∣ ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑘 ) −ℎ 𝑥 ) ) < 𝑦 ) } |
| 7 |
6
|
relopabiv |
⊢ Rel ⇝𝑣 |
| 8 |
|
relres |
⊢ Rel ( ( ⇝𝑡 ‘ 𝐽 ) ↾ ( ℋ ↑m ℕ ) ) |
| 9 |
6
|
eleq2i |
⊢ ( 〈 𝑓 , 𝑥 〉 ∈ ⇝𝑣 ↔ 〈 𝑓 , 𝑥 〉 ∈ { 〈 𝑓 , 𝑥 〉 ∣ ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑘 ) −ℎ 𝑥 ) ) < 𝑦 ) } ) |
| 10 |
|
opabidw |
⊢ ( 〈 𝑓 , 𝑥 〉 ∈ { 〈 𝑓 , 𝑥 〉 ∣ ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑘 ) −ℎ 𝑥 ) ) < 𝑦 ) } ↔ ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑘 ) −ℎ 𝑥 ) ) < 𝑦 ) ) |
| 11 |
3
|
hlex |
⊢ ℋ ∈ V |
| 12 |
|
nnex |
⊢ ℕ ∈ V |
| 13 |
11 12
|
elmap |
⊢ ( 𝑓 ∈ ( ℋ ↑m ℕ ) ↔ 𝑓 : ℕ ⟶ ℋ ) |
| 14 |
13
|
anbi1i |
⊢ ( ( 𝑓 ∈ ( ℋ ↑m ℕ ) ∧ 〈 𝑓 , 𝑥 〉 ∈ ( ⇝𝑡 ‘ 𝐽 ) ) ↔ ( 𝑓 : ℕ ⟶ ℋ ∧ 〈 𝑓 , 𝑥 〉 ∈ ( ⇝𝑡 ‘ 𝐽 ) ) ) |
| 15 |
|
df-br |
⊢ ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ↔ 〈 𝑓 , 𝑥 〉 ∈ ( ⇝𝑡 ‘ 𝐽 ) ) |
| 16 |
3 4
|
imsxmet |
⊢ ( 𝑈 ∈ NrmCVec → 𝐷 ∈ ( ∞Met ‘ ℋ ) ) |
| 17 |
2 16
|
mp1i |
⊢ ( 𝑓 : ℕ ⟶ ℋ → 𝐷 ∈ ( ∞Met ‘ ℋ ) ) |
| 18 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 19 |
|
1zzd |
⊢ ( 𝑓 : ℕ ⟶ ℋ → 1 ∈ ℤ ) |
| 20 |
|
eqidd |
⊢ ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑘 ∈ ℕ ) → ( 𝑓 ‘ 𝑘 ) = ( 𝑓 ‘ 𝑘 ) ) |
| 21 |
|
id |
⊢ ( 𝑓 : ℕ ⟶ ℋ → 𝑓 : ℕ ⟶ ℋ ) |
| 22 |
5 17 18 19 20 21
|
lmmbrf |
⊢ ( 𝑓 : ℕ ⟶ ℋ → ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ↔ ( 𝑥 ∈ ℋ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑘 ) 𝐷 𝑥 ) < 𝑦 ) ) ) |
| 23 |
|
eluznn |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ ℕ ) |
| 24 |
|
ffvelcdm |
⊢ ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑘 ∈ ℕ ) → ( 𝑓 ‘ 𝑘 ) ∈ ℋ ) |
| 25 |
1 2 3 4
|
h2hmetdval |
⊢ ( ( ( 𝑓 ‘ 𝑘 ) ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑓 ‘ 𝑘 ) 𝐷 𝑥 ) = ( normℎ ‘ ( ( 𝑓 ‘ 𝑘 ) −ℎ 𝑥 ) ) ) |
| 26 |
24 25
|
sylan |
⊢ ( ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝑓 ‘ 𝑘 ) 𝐷 𝑥 ) = ( normℎ ‘ ( ( 𝑓 ‘ 𝑘 ) −ℎ 𝑥 ) ) ) |
| 27 |
26
|
breq1d |
⊢ ( ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝑓 ‘ 𝑘 ) 𝐷 𝑥 ) < 𝑦 ↔ ( normℎ ‘ ( ( 𝑓 ‘ 𝑘 ) −ℎ 𝑥 ) ) < 𝑦 ) ) |
| 28 |
27
|
an32s |
⊢ ( ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝑓 ‘ 𝑘 ) 𝐷 𝑥 ) < 𝑦 ↔ ( normℎ ‘ ( ( 𝑓 ‘ 𝑘 ) −ℎ 𝑥 ) ) < 𝑦 ) ) |
| 29 |
23 28
|
sylan2 |
⊢ ( ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( 𝑓 ‘ 𝑘 ) 𝐷 𝑥 ) < 𝑦 ↔ ( normℎ ‘ ( ( 𝑓 ‘ 𝑘 ) −ℎ 𝑥 ) ) < 𝑦 ) ) |
| 30 |
29
|
anassrs |
⊢ ( ( ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝑓 ‘ 𝑘 ) 𝐷 𝑥 ) < 𝑦 ↔ ( normℎ ‘ ( ( 𝑓 ‘ 𝑘 ) −ℎ 𝑥 ) ) < 𝑦 ) ) |
| 31 |
30
|
ralbidva |
⊢ ( ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ 𝑗 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑘 ) 𝐷 𝑥 ) < 𝑦 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑘 ) −ℎ 𝑥 ) ) < 𝑦 ) ) |
| 32 |
31
|
rexbidva |
⊢ ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑘 ) 𝐷 𝑥 ) < 𝑦 ↔ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑘 ) −ℎ 𝑥 ) ) < 𝑦 ) ) |
| 33 |
32
|
ralbidv |
⊢ ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑘 ) 𝐷 𝑥 ) < 𝑦 ↔ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑘 ) −ℎ 𝑥 ) ) < 𝑦 ) ) |
| 34 |
33
|
pm5.32da |
⊢ ( 𝑓 : ℕ ⟶ ℋ → ( ( 𝑥 ∈ ℋ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑘 ) 𝐷 𝑥 ) < 𝑦 ) ↔ ( 𝑥 ∈ ℋ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑘 ) −ℎ 𝑥 ) ) < 𝑦 ) ) ) |
| 35 |
22 34
|
bitrd |
⊢ ( 𝑓 : ℕ ⟶ ℋ → ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ↔ ( 𝑥 ∈ ℋ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑘 ) −ℎ 𝑥 ) ) < 𝑦 ) ) ) |
| 36 |
15 35
|
bitr3id |
⊢ ( 𝑓 : ℕ ⟶ ℋ → ( 〈 𝑓 , 𝑥 〉 ∈ ( ⇝𝑡 ‘ 𝐽 ) ↔ ( 𝑥 ∈ ℋ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑘 ) −ℎ 𝑥 ) ) < 𝑦 ) ) ) |
| 37 |
36
|
pm5.32i |
⊢ ( ( 𝑓 : ℕ ⟶ ℋ ∧ 〈 𝑓 , 𝑥 〉 ∈ ( ⇝𝑡 ‘ 𝐽 ) ) ↔ ( 𝑓 : ℕ ⟶ ℋ ∧ ( 𝑥 ∈ ℋ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑘 ) −ℎ 𝑥 ) ) < 𝑦 ) ) ) |
| 38 |
14 37
|
bitr2i |
⊢ ( ( 𝑓 : ℕ ⟶ ℋ ∧ ( 𝑥 ∈ ℋ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑘 ) −ℎ 𝑥 ) ) < 𝑦 ) ) ↔ ( 𝑓 ∈ ( ℋ ↑m ℕ ) ∧ 〈 𝑓 , 𝑥 〉 ∈ ( ⇝𝑡 ‘ 𝐽 ) ) ) |
| 39 |
|
anass |
⊢ ( ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑘 ) −ℎ 𝑥 ) ) < 𝑦 ) ↔ ( 𝑓 : ℕ ⟶ ℋ ∧ ( 𝑥 ∈ ℋ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑘 ) −ℎ 𝑥 ) ) < 𝑦 ) ) ) |
| 40 |
|
opelres |
⊢ ( 𝑥 ∈ V → ( 〈 𝑓 , 𝑥 〉 ∈ ( ( ⇝𝑡 ‘ 𝐽 ) ↾ ( ℋ ↑m ℕ ) ) ↔ ( 𝑓 ∈ ( ℋ ↑m ℕ ) ∧ 〈 𝑓 , 𝑥 〉 ∈ ( ⇝𝑡 ‘ 𝐽 ) ) ) ) |
| 41 |
40
|
elv |
⊢ ( 〈 𝑓 , 𝑥 〉 ∈ ( ( ⇝𝑡 ‘ 𝐽 ) ↾ ( ℋ ↑m ℕ ) ) ↔ ( 𝑓 ∈ ( ℋ ↑m ℕ ) ∧ 〈 𝑓 , 𝑥 〉 ∈ ( ⇝𝑡 ‘ 𝐽 ) ) ) |
| 42 |
38 39 41
|
3bitr4i |
⊢ ( ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑘 ) −ℎ 𝑥 ) ) < 𝑦 ) ↔ 〈 𝑓 , 𝑥 〉 ∈ ( ( ⇝𝑡 ‘ 𝐽 ) ↾ ( ℋ ↑m ℕ ) ) ) |
| 43 |
9 10 42
|
3bitri |
⊢ ( 〈 𝑓 , 𝑥 〉 ∈ ⇝𝑣 ↔ 〈 𝑓 , 𝑥 〉 ∈ ( ( ⇝𝑡 ‘ 𝐽 ) ↾ ( ℋ ↑m ℕ ) ) ) |
| 44 |
7 8 43
|
eqrelriiv |
⊢ ⇝𝑣 = ( ( ⇝𝑡 ‘ 𝐽 ) ↾ ( ℋ ↑m ℕ ) ) |