Description: The vector subtraction operation of Hilbert space. (Contributed by NM, 6-Jun-2008) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | h2h.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| h2h.2 | ⊢ 𝑈 ∈ NrmCVec | ||
| h2h.4 | ⊢ ℋ = ( BaseSet ‘ 𝑈 ) | ||
| Assertion | h2hvs | ⊢ −ℎ = ( −𝑣 ‘ 𝑈 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | h2h.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| 2 | h2h.2 | ⊢ 𝑈 ∈ NrmCVec | |
| 3 | h2h.4 | ⊢ ℋ = ( BaseSet ‘ 𝑈 ) | |
| 4 | df-hvsub | ⊢ −ℎ = ( 𝑥 ∈ ℋ , 𝑦 ∈ ℋ ↦ ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) | |
| 5 | 1 2 | h2hva | ⊢ +ℎ = ( +𝑣 ‘ 𝑈 ) | 
| 6 | 1 2 | h2hsm | ⊢ ·ℎ = ( ·𝑠OLD ‘ 𝑈 ) | 
| 7 | eqid | ⊢ ( −𝑣 ‘ 𝑈 ) = ( −𝑣 ‘ 𝑈 ) | |
| 8 | 3 5 6 7 | nvmfval | ⊢ ( 𝑈 ∈ NrmCVec → ( −𝑣 ‘ 𝑈 ) = ( 𝑥 ∈ ℋ , 𝑦 ∈ ℋ ↦ ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) ) | 
| 9 | 2 8 | ax-mp | ⊢ ( −𝑣 ‘ 𝑈 ) = ( 𝑥 ∈ ℋ , 𝑦 ∈ ℋ ↦ ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) | 
| 10 | 4 9 | eqtr4i | ⊢ −ℎ = ( −𝑣 ‘ 𝑈 ) |