Metamath Proof Explorer


Theorem h2hvs

Description: The vector subtraction operation of Hilbert space. (Contributed by NM, 6-Jun-2008) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses h2h.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
h2h.2 𝑈 ∈ NrmCVec
h2h.4 ℋ = ( BaseSet ‘ 𝑈 )
Assertion h2hvs = ( −𝑣𝑈 )

Proof

Step Hyp Ref Expression
1 h2h.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
2 h2h.2 𝑈 ∈ NrmCVec
3 h2h.4 ℋ = ( BaseSet ‘ 𝑈 )
4 df-hvsub = ( 𝑥 ∈ ℋ , 𝑦 ∈ ℋ ↦ ( 𝑥 + ( - 1 · 𝑦 ) ) )
5 1 2 h2hva + = ( +𝑣𝑈 )
6 1 2 h2hsm · = ( ·𝑠OLD𝑈 )
7 eqid ( −𝑣𝑈 ) = ( −𝑣𝑈 )
8 3 5 6 7 nvmfval ( 𝑈 ∈ NrmCVec → ( −𝑣𝑈 ) = ( 𝑥 ∈ ℋ , 𝑦 ∈ ℋ ↦ ( 𝑥 + ( - 1 · 𝑦 ) ) ) )
9 2 8 ax-mp ( −𝑣𝑈 ) = ( 𝑥 ∈ ℋ , 𝑦 ∈ ℋ ↦ ( 𝑥 + ( - 1 · 𝑦 ) ) )
10 4 9 eqtr4i = ( −𝑣𝑈 )