Description: The vector subtraction operation of Hilbert space. (Contributed by NM, 6-Jun-2008) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | h2h.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
h2h.2 | ⊢ 𝑈 ∈ NrmCVec | ||
h2h.4 | ⊢ ℋ = ( BaseSet ‘ 𝑈 ) | ||
Assertion | h2hvs | ⊢ −ℎ = ( −𝑣 ‘ 𝑈 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | h2h.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
2 | h2h.2 | ⊢ 𝑈 ∈ NrmCVec | |
3 | h2h.4 | ⊢ ℋ = ( BaseSet ‘ 𝑈 ) | |
4 | df-hvsub | ⊢ −ℎ = ( 𝑥 ∈ ℋ , 𝑦 ∈ ℋ ↦ ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) | |
5 | 1 2 | h2hva | ⊢ +ℎ = ( +𝑣 ‘ 𝑈 ) |
6 | 1 2 | h2hsm | ⊢ ·ℎ = ( ·𝑠OLD ‘ 𝑈 ) |
7 | eqid | ⊢ ( −𝑣 ‘ 𝑈 ) = ( −𝑣 ‘ 𝑈 ) | |
8 | 3 5 6 7 | nvmfval | ⊢ ( 𝑈 ∈ NrmCVec → ( −𝑣 ‘ 𝑈 ) = ( 𝑥 ∈ ℋ , 𝑦 ∈ ℋ ↦ ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) ) |
9 | 2 8 | ax-mp | ⊢ ( −𝑣 ‘ 𝑈 ) = ( 𝑥 ∈ ℋ , 𝑦 ∈ ℋ ↦ ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) |
10 | 4 9 | eqtr4i | ⊢ −ℎ = ( −𝑣 ‘ 𝑈 ) |