Metamath Proof Explorer


Theorem had1

Description: If the first input is true, then the adder sum is equivalent to the biconditionality of the other two inputs. (Contributed by Mario Carneiro, 4-Sep-2016) (Proof shortened by Wolf Lammen, 11-Jul-2020)

Ref Expression
Assertion had1 ( 𝜑 → ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( 𝜓𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 hadrot ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ hadd ( 𝜓 , 𝜒 , 𝜑 ) )
2 hadbi ( hadd ( 𝜓 , 𝜒 , 𝜑 ) ↔ ( ( 𝜓𝜒 ) ↔ 𝜑 ) )
3 1 2 bitri ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜓𝜒 ) ↔ 𝜑 ) )
4 biass ( ( ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( 𝜓𝜒 ) ) ↔ 𝜑 ) ↔ ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜓𝜒 ) ↔ 𝜑 ) ) )
5 3 4 mpbir ( ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( 𝜓𝜒 ) ) ↔ 𝜑 )
6 5 biimpri ( 𝜑 → ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( 𝜓𝜒 ) ) )