Description: If the first input is true, then the adder sum is equivalent to the biconditionality of the other two inputs. (Contributed by Mario Carneiro, 4-Sep-2016) (Proof shortened by Wolf Lammen, 11-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | had1 | ⊢ ( 𝜑 → ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( 𝜓 ↔ 𝜒 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hadrot | ⊢ ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ hadd ( 𝜓 , 𝜒 , 𝜑 ) ) | |
2 | hadbi | ⊢ ( hadd ( 𝜓 , 𝜒 , 𝜑 ) ↔ ( ( 𝜓 ↔ 𝜒 ) ↔ 𝜑 ) ) | |
3 | 1 2 | bitri | ⊢ ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜓 ↔ 𝜒 ) ↔ 𝜑 ) ) |
4 | biass | ⊢ ( ( ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( 𝜓 ↔ 𝜒 ) ) ↔ 𝜑 ) ↔ ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜓 ↔ 𝜒 ) ↔ 𝜑 ) ) ) | |
5 | 3 4 | mpbir | ⊢ ( ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( 𝜓 ↔ 𝜒 ) ) ↔ 𝜑 ) |
6 | 5 | biimpri | ⊢ ( 𝜑 → ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( 𝜓 ↔ 𝜒 ) ) ) |