Metamath Proof Explorer


Theorem hadass

Description: Associative law for the adder sum. (Contributed by Mario Carneiro, 4-Sep-2016)

Ref Expression
Assertion hadass ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( 𝜑 ⊻ ( 𝜓𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 df-had ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑𝜓 ) ⊻ 𝜒 ) )
2 xorass ( ( ( 𝜑𝜓 ) ⊻ 𝜒 ) ↔ ( 𝜑 ⊻ ( 𝜓𝜒 ) ) )
3 1 2 bitri ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( 𝜑 ⊻ ( 𝜓𝜒 ) ) )