Description: The adder sum is the same as the triple biconditional. (Contributed by Mario Carneiro, 4-Sep-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | hadbi | ⊢ ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑 ↔ 𝜓 ) ↔ 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xor | ⊢ ( ( ( 𝜑 ⊻ 𝜓 ) ⊻ 𝜒 ) ↔ ¬ ( ( 𝜑 ⊻ 𝜓 ) ↔ 𝜒 ) ) | |
2 | df-had | ⊢ ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑 ⊻ 𝜓 ) ⊻ 𝜒 ) ) | |
3 | xnor | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( 𝜑 ⊻ 𝜓 ) ) | |
4 | 3 | bibi1i | ⊢ ( ( ( 𝜑 ↔ 𝜓 ) ↔ 𝜒 ) ↔ ( ¬ ( 𝜑 ⊻ 𝜓 ) ↔ 𝜒 ) ) |
5 | nbbn | ⊢ ( ( ¬ ( 𝜑 ⊻ 𝜓 ) ↔ 𝜒 ) ↔ ¬ ( ( 𝜑 ⊻ 𝜓 ) ↔ 𝜒 ) ) | |
6 | 4 5 | bitri | ⊢ ( ( ( 𝜑 ↔ 𝜓 ) ↔ 𝜒 ) ↔ ¬ ( ( 𝜑 ⊻ 𝜓 ) ↔ 𝜒 ) ) |
7 | 1 2 6 | 3bitr4i | ⊢ ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑 ↔ 𝜓 ) ↔ 𝜒 ) ) |