Metamath Proof Explorer


Theorem hadbi

Description: The adder sum is the same as the triple biconditional. (Contributed by Mario Carneiro, 4-Sep-2016)

Ref Expression
Assertion hadbi ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑𝜓 ) ↔ 𝜒 ) )

Proof

Step Hyp Ref Expression
1 df-xor ( ( ( 𝜑𝜓 ) ⊻ 𝜒 ) ↔ ¬ ( ( 𝜑𝜓 ) ↔ 𝜒 ) )
2 df-had ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑𝜓 ) ⊻ 𝜒 ) )
3 xnor ( ( 𝜑𝜓 ) ↔ ¬ ( 𝜑𝜓 ) )
4 3 bibi1i ( ( ( 𝜑𝜓 ) ↔ 𝜒 ) ↔ ( ¬ ( 𝜑𝜓 ) ↔ 𝜒 ) )
5 nbbn ( ( ¬ ( 𝜑𝜓 ) ↔ 𝜒 ) ↔ ¬ ( ( 𝜑𝜓 ) ↔ 𝜒 ) )
6 4 5 bitri ( ( ( 𝜑𝜓 ) ↔ 𝜒 ) ↔ ¬ ( ( 𝜑𝜓 ) ↔ 𝜒 ) )
7 1 2 6 3bitr4i ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑𝜓 ) ↔ 𝜒 ) )