Description: The adder sum is the same as the triple biconditional. (Contributed by Mario Carneiro, 4-Sep-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hadbi | ⊢ ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑 ↔ 𝜓 ) ↔ 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xor | ⊢ ( ( ( 𝜑 ⊻ 𝜓 ) ⊻ 𝜒 ) ↔ ¬ ( ( 𝜑 ⊻ 𝜓 ) ↔ 𝜒 ) ) | |
| 2 | df-had | ⊢ ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑 ⊻ 𝜓 ) ⊻ 𝜒 ) ) | |
| 3 | xnor | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( 𝜑 ⊻ 𝜓 ) ) | |
| 4 | 3 | bibi1i | ⊢ ( ( ( 𝜑 ↔ 𝜓 ) ↔ 𝜒 ) ↔ ( ¬ ( 𝜑 ⊻ 𝜓 ) ↔ 𝜒 ) ) |
| 5 | nbbn | ⊢ ( ( ¬ ( 𝜑 ⊻ 𝜓 ) ↔ 𝜒 ) ↔ ¬ ( ( 𝜑 ⊻ 𝜓 ) ↔ 𝜒 ) ) | |
| 6 | 4 5 | bitri | ⊢ ( ( ( 𝜑 ↔ 𝜓 ) ↔ 𝜒 ) ↔ ¬ ( ( 𝜑 ⊻ 𝜓 ) ↔ 𝜒 ) ) |
| 7 | 1 2 6 | 3bitr4i | ⊢ ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑 ↔ 𝜓 ) ↔ 𝜒 ) ) |