Description: Equality theorem for the adder sum. (Contributed by Mario Carneiro, 4-Sep-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hadbid.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| hadbid.2 | ⊢ ( 𝜑 → ( 𝜃 ↔ 𝜏 ) ) | ||
| hadbid.3 | ⊢ ( 𝜑 → ( 𝜂 ↔ 𝜁 ) ) | ||
| Assertion | hadbi123d | ⊢ ( 𝜑 → ( hadd ( 𝜓 , 𝜃 , 𝜂 ) ↔ hadd ( 𝜒 , 𝜏 , 𝜁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hadbid.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| 2 | hadbid.2 | ⊢ ( 𝜑 → ( 𝜃 ↔ 𝜏 ) ) | |
| 3 | hadbid.3 | ⊢ ( 𝜑 → ( 𝜂 ↔ 𝜁 ) ) | |
| 4 | 1 2 | xorbi12d | ⊢ ( 𝜑 → ( ( 𝜓 ⊻ 𝜃 ) ↔ ( 𝜒 ⊻ 𝜏 ) ) ) |
| 5 | 4 3 | xorbi12d | ⊢ ( 𝜑 → ( ( ( 𝜓 ⊻ 𝜃 ) ⊻ 𝜂 ) ↔ ( ( 𝜒 ⊻ 𝜏 ) ⊻ 𝜁 ) ) ) |
| 6 | df-had | ⊢ ( hadd ( 𝜓 , 𝜃 , 𝜂 ) ↔ ( ( 𝜓 ⊻ 𝜃 ) ⊻ 𝜂 ) ) | |
| 7 | df-had | ⊢ ( hadd ( 𝜒 , 𝜏 , 𝜁 ) ↔ ( ( 𝜒 ⊻ 𝜏 ) ⊻ 𝜁 ) ) | |
| 8 | 5 6 7 | 3bitr4g | ⊢ ( 𝜑 → ( hadd ( 𝜓 , 𝜃 , 𝜂 ) ↔ hadd ( 𝜒 , 𝜏 , 𝜁 ) ) ) |