Metamath Proof Explorer


Theorem hadcomaOLD

Description: Obsolete version of hadcoma as of 17-Dec-2023. (Contributed by Mario Carneiro, 4-Sep-2016) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion hadcomaOLD ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ hadd ( 𝜓 , 𝜑 , 𝜒 ) )

Proof

Step Hyp Ref Expression
1 xorcom ( ( 𝜑𝜓 ) ↔ ( 𝜓𝜑 ) )
2 biid ( 𝜒𝜒 )
3 1 2 xorbi12i ( ( ( 𝜑𝜓 ) ⊻ 𝜒 ) ↔ ( ( 𝜓𝜑 ) ⊻ 𝜒 ) )
4 df-had ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑𝜓 ) ⊻ 𝜒 ) )
5 df-had ( hadd ( 𝜓 , 𝜑 , 𝜒 ) ↔ ( ( 𝜓𝜑 ) ⊻ 𝜒 ) )
6 3 4 5 3bitr4i ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ hadd ( 𝜓 , 𝜑 , 𝜒 ) )