Metamath Proof Explorer


Theorem hadrot

Description: Rotation law for the adder sum. (Contributed by Mario Carneiro, 4-Sep-2016)

Ref Expression
Assertion hadrot ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ hadd ( 𝜓 , 𝜒 , 𝜑 ) )

Proof

Step Hyp Ref Expression
1 hadcoma ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ hadd ( 𝜓 , 𝜑 , 𝜒 ) )
2 hadcomb ( hadd ( 𝜓 , 𝜑 , 𝜒 ) ↔ hadd ( 𝜓 , 𝜒 , 𝜑 ) )
3 1 2 bitri ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ hadd ( 𝜓 , 𝜒 , 𝜑 ) )