Metamath Proof Explorer


Theorem halfcl

Description: Closure of half of a number. (Contributed by NM, 1-Jan-2006)

Ref Expression
Assertion halfcl ( 𝐴 ∈ ℂ → ( 𝐴 / 2 ) ∈ ℂ )

Proof

Step Hyp Ref Expression
1 2cn 2 ∈ ℂ
2 2ne0 2 ≠ 0
3 divcl ( ( 𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( 𝐴 / 2 ) ∈ ℂ )
4 1 2 3 mp3an23 ( 𝐴 ∈ ℂ → ( 𝐴 / 2 ) ∈ ℂ )