Description: Floor of ( 1 / 2 ) . (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | halffl | ⊢ ( ⌊ ‘ ( 1 / 2 ) ) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re | ⊢ 0 ∈ ℝ | |
2 | halfre | ⊢ ( 1 / 2 ) ∈ ℝ | |
3 | halfgt0 | ⊢ 0 < ( 1 / 2 ) | |
4 | 1 2 3 | ltleii | ⊢ 0 ≤ ( 1 / 2 ) |
5 | halflt1 | ⊢ ( 1 / 2 ) < 1 | |
6 | 1e0p1 | ⊢ 1 = ( 0 + 1 ) | |
7 | 5 6 | breqtri | ⊢ ( 1 / 2 ) < ( 0 + 1 ) |
8 | 0z | ⊢ 0 ∈ ℤ | |
9 | flbi | ⊢ ( ( ( 1 / 2 ) ∈ ℝ ∧ 0 ∈ ℤ ) → ( ( ⌊ ‘ ( 1 / 2 ) ) = 0 ↔ ( 0 ≤ ( 1 / 2 ) ∧ ( 1 / 2 ) < ( 0 + 1 ) ) ) ) | |
10 | 2 8 9 | mp2an | ⊢ ( ( ⌊ ‘ ( 1 / 2 ) ) = 0 ↔ ( 0 ≤ ( 1 / 2 ) ∧ ( 1 / 2 ) < ( 0 + 1 ) ) ) |
11 | 4 7 10 | mpbir2an | ⊢ ( ⌊ ‘ ( 1 / 2 ) ) = 0 |