Metamath Proof Explorer


Theorem halffl

Description: Floor of ( 1 / 2 ) . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion halffl ( ⌊ ‘ ( 1 / 2 ) ) = 0

Proof

Step Hyp Ref Expression
1 0re 0 ∈ ℝ
2 halfre ( 1 / 2 ) ∈ ℝ
3 halfgt0 0 < ( 1 / 2 )
4 1 2 3 ltleii 0 ≤ ( 1 / 2 )
5 halflt1 ( 1 / 2 ) < 1
6 1e0p1 1 = ( 0 + 1 )
7 5 6 breqtri ( 1 / 2 ) < ( 0 + 1 )
8 0z 0 ∈ ℤ
9 flbi ( ( ( 1 / 2 ) ∈ ℝ ∧ 0 ∈ ℤ ) → ( ( ⌊ ‘ ( 1 / 2 ) ) = 0 ↔ ( 0 ≤ ( 1 / 2 ) ∧ ( 1 / 2 ) < ( 0 + 1 ) ) ) )
10 2 8 9 mp2an ( ( ⌊ ‘ ( 1 / 2 ) ) = 0 ↔ ( 0 ≤ ( 1 / 2 ) ∧ ( 1 / 2 ) < ( 0 + 1 ) ) )
11 4 7 10 mpbir2an ( ⌊ ‘ ( 1 / 2 ) ) = 0