Step |
Hyp |
Ref |
Expression |
1 |
|
odd2np1 |
⊢ ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
2 |
|
0xr |
⊢ 0 ∈ ℝ* |
3 |
|
1xr |
⊢ 1 ∈ ℝ* |
4 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
5 |
4
|
rexri |
⊢ ( 1 / 2 ) ∈ ℝ* |
6 |
2 3 5
|
3pm3.2i |
⊢ ( 0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ ( 1 / 2 ) ∈ ℝ* ) |
7 |
|
halfgt0 |
⊢ 0 < ( 1 / 2 ) |
8 |
|
halflt1 |
⊢ ( 1 / 2 ) < 1 |
9 |
7 8
|
pm3.2i |
⊢ ( 0 < ( 1 / 2 ) ∧ ( 1 / 2 ) < 1 ) |
10 |
|
elioo3g |
⊢ ( ( 1 / 2 ) ∈ ( 0 (,) 1 ) ↔ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ ( 1 / 2 ) ∈ ℝ* ) ∧ ( 0 < ( 1 / 2 ) ∧ ( 1 / 2 ) < 1 ) ) ) |
11 |
6 9 10
|
mpbir2an |
⊢ ( 1 / 2 ) ∈ ( 0 (,) 1 ) |
12 |
|
zltaddlt1le |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ( 1 / 2 ) ∈ ( 0 (,) 1 ) ) → ( ( 𝑛 + ( 1 / 2 ) ) < 𝑀 ↔ ( 𝑛 + ( 1 / 2 ) ) ≤ 𝑀 ) ) |
13 |
11 12
|
mp3an3 |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑛 + ( 1 / 2 ) ) < 𝑀 ↔ ( 𝑛 + ( 1 / 2 ) ) ≤ 𝑀 ) ) |
14 |
|
zcn |
⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℂ ) |
15 |
14
|
adantr |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → 𝑛 ∈ ℂ ) |
16 |
|
1cnd |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → 1 ∈ ℂ ) |
17 |
|
2cnne0 |
⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) |
18 |
17
|
a1i |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) |
19 |
|
muldivdir |
⊢ ( ( 𝑛 ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) = ( 𝑛 + ( 1 / 2 ) ) ) |
20 |
15 16 18 19
|
syl3anc |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) = ( 𝑛 + ( 1 / 2 ) ) ) |
21 |
20
|
breq1d |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) < 𝑀 ↔ ( 𝑛 + ( 1 / 2 ) ) < 𝑀 ) ) |
22 |
20
|
breq1d |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) ≤ 𝑀 ↔ ( 𝑛 + ( 1 / 2 ) ) ≤ 𝑀 ) ) |
23 |
13 21 22
|
3bitr4rd |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) ≤ 𝑀 ↔ ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) < 𝑀 ) ) |
24 |
|
oveq1 |
⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) = ( 𝑁 / 2 ) ) |
25 |
24
|
breq1d |
⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) ≤ 𝑀 ↔ ( 𝑁 / 2 ) ≤ 𝑀 ) ) |
26 |
24
|
breq1d |
⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) < 𝑀 ↔ ( 𝑁 / 2 ) < 𝑀 ) ) |
27 |
25 26
|
bibi12d |
⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( ( ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) ≤ 𝑀 ↔ ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) < 𝑀 ) ↔ ( ( 𝑁 / 2 ) ≤ 𝑀 ↔ ( 𝑁 / 2 ) < 𝑀 ) ) ) |
28 |
23 27
|
syl5ibcom |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( ( 𝑁 / 2 ) ≤ 𝑀 ↔ ( 𝑁 / 2 ) < 𝑀 ) ) ) |
29 |
28
|
ex |
⊢ ( 𝑛 ∈ ℤ → ( 𝑀 ∈ ℤ → ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( ( 𝑁 / 2 ) ≤ 𝑀 ↔ ( 𝑁 / 2 ) < 𝑀 ) ) ) ) |
30 |
29
|
adantl |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 𝑀 ∈ ℤ → ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( ( 𝑁 / 2 ) ≤ 𝑀 ↔ ( 𝑁 / 2 ) < 𝑀 ) ) ) ) |
31 |
30
|
com23 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( 𝑀 ∈ ℤ → ( ( 𝑁 / 2 ) ≤ 𝑀 ↔ ( 𝑁 / 2 ) < 𝑀 ) ) ) ) |
32 |
31
|
rexlimdva |
⊢ ( 𝑁 ∈ ℤ → ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( 𝑀 ∈ ℤ → ( ( 𝑁 / 2 ) ≤ 𝑀 ↔ ( 𝑁 / 2 ) < 𝑀 ) ) ) ) |
33 |
1 32
|
sylbid |
⊢ ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ 𝑁 → ( 𝑀 ∈ ℤ → ( ( 𝑁 / 2 ) ≤ 𝑀 ↔ ( 𝑁 / 2 ) < 𝑀 ) ) ) ) |
34 |
33
|
3imp |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ∧ 𝑀 ∈ ℤ ) → ( ( 𝑁 / 2 ) ≤ 𝑀 ↔ ( 𝑁 / 2 ) < 𝑀 ) ) |