| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odd2np1 | ⊢ ( 𝑁  ∈  ℤ  →  ( ¬  2  ∥  𝑁  ↔  ∃ 𝑛  ∈  ℤ ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) ) | 
						
							| 2 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 3 |  | 1xr | ⊢ 1  ∈  ℝ* | 
						
							| 4 |  | halfre | ⊢ ( 1  /  2 )  ∈  ℝ | 
						
							| 5 | 4 | rexri | ⊢ ( 1  /  2 )  ∈  ℝ* | 
						
							| 6 | 2 3 5 | 3pm3.2i | ⊢ ( 0  ∈  ℝ*  ∧  1  ∈  ℝ*  ∧  ( 1  /  2 )  ∈  ℝ* ) | 
						
							| 7 |  | halfgt0 | ⊢ 0  <  ( 1  /  2 ) | 
						
							| 8 |  | halflt1 | ⊢ ( 1  /  2 )  <  1 | 
						
							| 9 | 7 8 | pm3.2i | ⊢ ( 0  <  ( 1  /  2 )  ∧  ( 1  /  2 )  <  1 ) | 
						
							| 10 |  | elioo3g | ⊢ ( ( 1  /  2 )  ∈  ( 0 (,) 1 )  ↔  ( ( 0  ∈  ℝ*  ∧  1  ∈  ℝ*  ∧  ( 1  /  2 )  ∈  ℝ* )  ∧  ( 0  <  ( 1  /  2 )  ∧  ( 1  /  2 )  <  1 ) ) ) | 
						
							| 11 | 6 9 10 | mpbir2an | ⊢ ( 1  /  2 )  ∈  ( 0 (,) 1 ) | 
						
							| 12 |  | zltaddlt1le | ⊢ ( ( 𝑛  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  ( 1  /  2 )  ∈  ( 0 (,) 1 ) )  →  ( ( 𝑛  +  ( 1  /  2 ) )  <  𝑀  ↔  ( 𝑛  +  ( 1  /  2 ) )  ≤  𝑀 ) ) | 
						
							| 13 | 11 12 | mp3an3 | ⊢ ( ( 𝑛  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( ( 𝑛  +  ( 1  /  2 ) )  <  𝑀  ↔  ( 𝑛  +  ( 1  /  2 ) )  ≤  𝑀 ) ) | 
						
							| 14 |  | zcn | ⊢ ( 𝑛  ∈  ℤ  →  𝑛  ∈  ℂ ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝑛  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  𝑛  ∈  ℂ ) | 
						
							| 16 |  | 1cnd | ⊢ ( ( 𝑛  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  1  ∈  ℂ ) | 
						
							| 17 |  | 2cnne0 | ⊢ ( 2  ∈  ℂ  ∧  2  ≠  0 ) | 
						
							| 18 | 17 | a1i | ⊢ ( ( 𝑛  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( 2  ∈  ℂ  ∧  2  ≠  0 ) ) | 
						
							| 19 |  | muldivdir | ⊢ ( ( 𝑛  ∈  ℂ  ∧  1  ∈  ℂ  ∧  ( 2  ∈  ℂ  ∧  2  ≠  0 ) )  →  ( ( ( 2  ·  𝑛 )  +  1 )  /  2 )  =  ( 𝑛  +  ( 1  /  2 ) ) ) | 
						
							| 20 | 15 16 18 19 | syl3anc | ⊢ ( ( 𝑛  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( ( ( 2  ·  𝑛 )  +  1 )  /  2 )  =  ( 𝑛  +  ( 1  /  2 ) ) ) | 
						
							| 21 | 20 | breq1d | ⊢ ( ( 𝑛  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( ( ( ( 2  ·  𝑛 )  +  1 )  /  2 )  <  𝑀  ↔  ( 𝑛  +  ( 1  /  2 ) )  <  𝑀 ) ) | 
						
							| 22 | 20 | breq1d | ⊢ ( ( 𝑛  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( ( ( ( 2  ·  𝑛 )  +  1 )  /  2 )  ≤  𝑀  ↔  ( 𝑛  +  ( 1  /  2 ) )  ≤  𝑀 ) ) | 
						
							| 23 | 13 21 22 | 3bitr4rd | ⊢ ( ( 𝑛  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( ( ( ( 2  ·  𝑛 )  +  1 )  /  2 )  ≤  𝑀  ↔  ( ( ( 2  ·  𝑛 )  +  1 )  /  2 )  <  𝑀 ) ) | 
						
							| 24 |  | oveq1 | ⊢ ( ( ( 2  ·  𝑛 )  +  1 )  =  𝑁  →  ( ( ( 2  ·  𝑛 )  +  1 )  /  2 )  =  ( 𝑁  /  2 ) ) | 
						
							| 25 | 24 | breq1d | ⊢ ( ( ( 2  ·  𝑛 )  +  1 )  =  𝑁  →  ( ( ( ( 2  ·  𝑛 )  +  1 )  /  2 )  ≤  𝑀  ↔  ( 𝑁  /  2 )  ≤  𝑀 ) ) | 
						
							| 26 | 24 | breq1d | ⊢ ( ( ( 2  ·  𝑛 )  +  1 )  =  𝑁  →  ( ( ( ( 2  ·  𝑛 )  +  1 )  /  2 )  <  𝑀  ↔  ( 𝑁  /  2 )  <  𝑀 ) ) | 
						
							| 27 | 25 26 | bibi12d | ⊢ ( ( ( 2  ·  𝑛 )  +  1 )  =  𝑁  →  ( ( ( ( ( 2  ·  𝑛 )  +  1 )  /  2 )  ≤  𝑀  ↔  ( ( ( 2  ·  𝑛 )  +  1 )  /  2 )  <  𝑀 )  ↔  ( ( 𝑁  /  2 )  ≤  𝑀  ↔  ( 𝑁  /  2 )  <  𝑀 ) ) ) | 
						
							| 28 | 23 27 | syl5ibcom | ⊢ ( ( 𝑛  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( ( ( 2  ·  𝑛 )  +  1 )  =  𝑁  →  ( ( 𝑁  /  2 )  ≤  𝑀  ↔  ( 𝑁  /  2 )  <  𝑀 ) ) ) | 
						
							| 29 | 28 | ex | ⊢ ( 𝑛  ∈  ℤ  →  ( 𝑀  ∈  ℤ  →  ( ( ( 2  ·  𝑛 )  +  1 )  =  𝑁  →  ( ( 𝑁  /  2 )  ≤  𝑀  ↔  ( 𝑁  /  2 )  <  𝑀 ) ) ) ) | 
						
							| 30 | 29 | adantl | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑛  ∈  ℤ )  →  ( 𝑀  ∈  ℤ  →  ( ( ( 2  ·  𝑛 )  +  1 )  =  𝑁  →  ( ( 𝑁  /  2 )  ≤  𝑀  ↔  ( 𝑁  /  2 )  <  𝑀 ) ) ) ) | 
						
							| 31 | 30 | com23 | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑛  ∈  ℤ )  →  ( ( ( 2  ·  𝑛 )  +  1 )  =  𝑁  →  ( 𝑀  ∈  ℤ  →  ( ( 𝑁  /  2 )  ≤  𝑀  ↔  ( 𝑁  /  2 )  <  𝑀 ) ) ) ) | 
						
							| 32 | 31 | rexlimdva | ⊢ ( 𝑁  ∈  ℤ  →  ( ∃ 𝑛  ∈  ℤ ( ( 2  ·  𝑛 )  +  1 )  =  𝑁  →  ( 𝑀  ∈  ℤ  →  ( ( 𝑁  /  2 )  ≤  𝑀  ↔  ( 𝑁  /  2 )  <  𝑀 ) ) ) ) | 
						
							| 33 | 1 32 | sylbid | ⊢ ( 𝑁  ∈  ℤ  →  ( ¬  2  ∥  𝑁  →  ( 𝑀  ∈  ℤ  →  ( ( 𝑁  /  2 )  ≤  𝑀  ↔  ( 𝑁  /  2 )  <  𝑀 ) ) ) ) | 
						
							| 34 | 33 | 3imp | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ¬  2  ∥  𝑁  ∧  𝑀  ∈  ℤ )  →  ( ( 𝑁  /  2 )  ≤  𝑀  ↔  ( 𝑁  /  2 )  <  𝑀 ) ) |