Metamath Proof Explorer


Theorem halflt1

Description: One-half is less than one. (Contributed by NM, 24-Feb-2005)

Ref Expression
Assertion halflt1 ( 1 / 2 ) < 1

Proof

Step Hyp Ref Expression
1 1div1e1 ( 1 / 1 ) = 1
2 1lt2 1 < 2
3 1 2 eqbrtri ( 1 / 1 ) < 2
4 1re 1 ∈ ℝ
5 2re 2 ∈ ℝ
6 0lt1 0 < 1
7 2pos 0 < 2
8 4 4 5 6 7 ltdiv23ii ( ( 1 / 1 ) < 2 ↔ ( 1 / 2 ) < 1 )
9 3 8 mpbi ( 1 / 2 ) < 1