| Step |
Hyp |
Ref |
Expression |
| 1 |
|
distrnq |
⊢ ( 𝐴 ·Q ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) = ( ( 𝐴 ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) +Q ( 𝐴 ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) |
| 2 |
|
distrnq |
⊢ ( ( 1Q +Q 1Q ) ·Q ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) = ( ( ( 1Q +Q 1Q ) ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) +Q ( ( 1Q +Q 1Q ) ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) |
| 3 |
|
1nq |
⊢ 1Q ∈ Q |
| 4 |
|
addclnq |
⊢ ( ( 1Q ∈ Q ∧ 1Q ∈ Q ) → ( 1Q +Q 1Q ) ∈ Q ) |
| 5 |
3 3 4
|
mp2an |
⊢ ( 1Q +Q 1Q ) ∈ Q |
| 6 |
|
recidnq |
⊢ ( ( 1Q +Q 1Q ) ∈ Q → ( ( 1Q +Q 1Q ) ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) = 1Q ) |
| 7 |
5 6
|
ax-mp |
⊢ ( ( 1Q +Q 1Q ) ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) = 1Q |
| 8 |
7 7
|
oveq12i |
⊢ ( ( ( 1Q +Q 1Q ) ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) +Q ( ( 1Q +Q 1Q ) ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) = ( 1Q +Q 1Q ) |
| 9 |
2 8
|
eqtri |
⊢ ( ( 1Q +Q 1Q ) ·Q ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) = ( 1Q +Q 1Q ) |
| 10 |
9
|
oveq1i |
⊢ ( ( ( 1Q +Q 1Q ) ·Q ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) = ( ( 1Q +Q 1Q ) ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) |
| 11 |
7
|
oveq2i |
⊢ ( ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ·Q ( ( 1Q +Q 1Q ) ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) = ( ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ·Q 1Q ) |
| 12 |
|
mulassnq |
⊢ ( ( ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ·Q ( 1Q +Q 1Q ) ) ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) = ( ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ·Q ( ( 1Q +Q 1Q ) ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) |
| 13 |
|
mulcomnq |
⊢ ( ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ·Q ( 1Q +Q 1Q ) ) = ( ( 1Q +Q 1Q ) ·Q ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) |
| 14 |
13
|
oveq1i |
⊢ ( ( ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ·Q ( 1Q +Q 1Q ) ) ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) = ( ( ( 1Q +Q 1Q ) ·Q ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) |
| 15 |
12 14
|
eqtr3i |
⊢ ( ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ·Q ( ( 1Q +Q 1Q ) ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) = ( ( ( 1Q +Q 1Q ) ·Q ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) |
| 16 |
|
recclnq |
⊢ ( ( 1Q +Q 1Q ) ∈ Q → ( *Q ‘ ( 1Q +Q 1Q ) ) ∈ Q ) |
| 17 |
|
addclnq |
⊢ ( ( ( *Q ‘ ( 1Q +Q 1Q ) ) ∈ Q ∧ ( *Q ‘ ( 1Q +Q 1Q ) ) ∈ Q ) → ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ∈ Q ) |
| 18 |
16 16 17
|
syl2anc |
⊢ ( ( 1Q +Q 1Q ) ∈ Q → ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ∈ Q ) |
| 19 |
|
mulidnq |
⊢ ( ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ∈ Q → ( ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ·Q 1Q ) = ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) |
| 20 |
5 18 19
|
mp2b |
⊢ ( ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ·Q 1Q ) = ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) |
| 21 |
11 15 20
|
3eqtr3i |
⊢ ( ( ( 1Q +Q 1Q ) ·Q ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) = ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) |
| 22 |
10 21 7
|
3eqtr3i |
⊢ ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) = 1Q |
| 23 |
22
|
oveq2i |
⊢ ( 𝐴 ·Q ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) = ( 𝐴 ·Q 1Q ) |
| 24 |
1 23
|
eqtr3i |
⊢ ( ( 𝐴 ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) +Q ( 𝐴 ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) = ( 𝐴 ·Q 1Q ) |
| 25 |
|
mulidnq |
⊢ ( 𝐴 ∈ Q → ( 𝐴 ·Q 1Q ) = 𝐴 ) |
| 26 |
24 25
|
eqtrid |
⊢ ( 𝐴 ∈ Q → ( ( 𝐴 ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) +Q ( 𝐴 ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) = 𝐴 ) |
| 27 |
|
ovex |
⊢ ( 𝐴 ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ∈ V |
| 28 |
|
oveq12 |
⊢ ( ( 𝑥 = ( 𝐴 ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ∧ 𝑥 = ( 𝐴 ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) → ( 𝑥 +Q 𝑥 ) = ( ( 𝐴 ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) +Q ( 𝐴 ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) ) |
| 29 |
28
|
anidms |
⊢ ( 𝑥 = ( 𝐴 ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) → ( 𝑥 +Q 𝑥 ) = ( ( 𝐴 ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) +Q ( 𝐴 ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) ) |
| 30 |
29
|
eqeq1d |
⊢ ( 𝑥 = ( 𝐴 ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) → ( ( 𝑥 +Q 𝑥 ) = 𝐴 ↔ ( ( 𝐴 ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) +Q ( 𝐴 ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) = 𝐴 ) ) |
| 31 |
27 30
|
spcev |
⊢ ( ( ( 𝐴 ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) +Q ( 𝐴 ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) = 𝐴 → ∃ 𝑥 ( 𝑥 +Q 𝑥 ) = 𝐴 ) |
| 32 |
26 31
|
syl |
⊢ ( 𝐴 ∈ Q → ∃ 𝑥 ( 𝑥 +Q 𝑥 ) = 𝐴 ) |