Metamath Proof Explorer


Theorem halfnz

Description: One-half is not an integer. (Contributed by NM, 31-Jul-2004)

Ref Expression
Assertion halfnz ¬ ( 1 / 2 ) ∈ ℤ

Proof

Step Hyp Ref Expression
1 2re 2 ∈ ℝ
2 1lt2 1 < 2
3 recnz ( ( 2 ∈ ℝ ∧ 1 < 2 ) → ¬ ( 1 / 2 ) ∈ ℤ )
4 1 2 3 mp2an ¬ ( 1 / 2 ) ∈ ℤ