Step |
Hyp |
Ref |
Expression |
1 |
|
3cn |
⊢ 3 ∈ ℂ |
2 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
3 |
|
2cn |
⊢ 2 ∈ ℂ |
4 |
|
3ne0 |
⊢ 3 ≠ 0 |
5 |
|
2ne0 |
⊢ 2 ≠ 0 |
6 |
1 1 2 3 4 5
|
divmuldivi |
⊢ ( ( 3 / 3 ) · ( 1 / 2 ) ) = ( ( 3 · 1 ) / ( 3 · 2 ) ) |
7 |
1 4
|
dividi |
⊢ ( 3 / 3 ) = 1 |
8 |
7
|
oveq1i |
⊢ ( ( 3 / 3 ) · ( 1 / 2 ) ) = ( 1 · ( 1 / 2 ) ) |
9 |
|
halfcn |
⊢ ( 1 / 2 ) ∈ ℂ |
10 |
9
|
mulid2i |
⊢ ( 1 · ( 1 / 2 ) ) = ( 1 / 2 ) |
11 |
8 10
|
eqtri |
⊢ ( ( 3 / 3 ) · ( 1 / 2 ) ) = ( 1 / 2 ) |
12 |
1
|
mulid1i |
⊢ ( 3 · 1 ) = 3 |
13 |
|
3t2e6 |
⊢ ( 3 · 2 ) = 6 |
14 |
12 13
|
oveq12i |
⊢ ( ( 3 · 1 ) / ( 3 · 2 ) ) = ( 3 / 6 ) |
15 |
6 11 14
|
3eqtr3i |
⊢ ( 1 / 2 ) = ( 3 / 6 ) |
16 |
15
|
oveq1i |
⊢ ( ( 1 / 2 ) − ( 1 / 6 ) ) = ( ( 3 / 6 ) − ( 1 / 6 ) ) |
17 |
|
6cn |
⊢ 6 ∈ ℂ |
18 |
|
6re |
⊢ 6 ∈ ℝ |
19 |
|
6pos |
⊢ 0 < 6 |
20 |
18 19
|
gt0ne0ii |
⊢ 6 ≠ 0 |
21 |
17 20
|
pm3.2i |
⊢ ( 6 ∈ ℂ ∧ 6 ≠ 0 ) |
22 |
|
divsubdir |
⊢ ( ( 3 ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 6 ∈ ℂ ∧ 6 ≠ 0 ) ) → ( ( 3 − 1 ) / 6 ) = ( ( 3 / 6 ) − ( 1 / 6 ) ) ) |
23 |
1 2 21 22
|
mp3an |
⊢ ( ( 3 − 1 ) / 6 ) = ( ( 3 / 6 ) − ( 1 / 6 ) ) |
24 |
|
3m1e2 |
⊢ ( 3 − 1 ) = 2 |
25 |
24
|
oveq1i |
⊢ ( ( 3 − 1 ) / 6 ) = ( 2 / 6 ) |
26 |
3
|
mulid2i |
⊢ ( 1 · 2 ) = 2 |
27 |
26 13
|
oveq12i |
⊢ ( ( 1 · 2 ) / ( 3 · 2 ) ) = ( 2 / 6 ) |
28 |
3 5
|
dividi |
⊢ ( 2 / 2 ) = 1 |
29 |
28
|
oveq2i |
⊢ ( ( 1 / 3 ) · ( 2 / 2 ) ) = ( ( 1 / 3 ) · 1 ) |
30 |
2 1 3 3 4 5
|
divmuldivi |
⊢ ( ( 1 / 3 ) · ( 2 / 2 ) ) = ( ( 1 · 2 ) / ( 3 · 2 ) ) |
31 |
1 4
|
reccli |
⊢ ( 1 / 3 ) ∈ ℂ |
32 |
31
|
mulid1i |
⊢ ( ( 1 / 3 ) · 1 ) = ( 1 / 3 ) |
33 |
29 30 32
|
3eqtr3i |
⊢ ( ( 1 · 2 ) / ( 3 · 2 ) ) = ( 1 / 3 ) |
34 |
25 27 33
|
3eqtr2i |
⊢ ( ( 3 − 1 ) / 6 ) = ( 1 / 3 ) |
35 |
16 23 34
|
3eqtr2i |
⊢ ( ( 1 / 2 ) − ( 1 / 6 ) ) = ( 1 / 3 ) |
36 |
1 2 17 20
|
divdiri |
⊢ ( ( 3 + 1 ) / 6 ) = ( ( 3 / 6 ) + ( 1 / 6 ) ) |
37 |
|
df-4 |
⊢ 4 = ( 3 + 1 ) |
38 |
37
|
oveq1i |
⊢ ( 4 / 6 ) = ( ( 3 + 1 ) / 6 ) |
39 |
15
|
oveq1i |
⊢ ( ( 1 / 2 ) + ( 1 / 6 ) ) = ( ( 3 / 6 ) + ( 1 / 6 ) ) |
40 |
36 38 39
|
3eqtr4ri |
⊢ ( ( 1 / 2 ) + ( 1 / 6 ) ) = ( 4 / 6 ) |
41 |
|
2t2e4 |
⊢ ( 2 · 2 ) = 4 |
42 |
41 13
|
oveq12i |
⊢ ( ( 2 · 2 ) / ( 3 · 2 ) ) = ( 4 / 6 ) |
43 |
28
|
oveq2i |
⊢ ( ( 2 / 3 ) · ( 2 / 2 ) ) = ( ( 2 / 3 ) · 1 ) |
44 |
3 1 3 3 4 5
|
divmuldivi |
⊢ ( ( 2 / 3 ) · ( 2 / 2 ) ) = ( ( 2 · 2 ) / ( 3 · 2 ) ) |
45 |
3 1 4
|
divcli |
⊢ ( 2 / 3 ) ∈ ℂ |
46 |
45
|
mulid1i |
⊢ ( ( 2 / 3 ) · 1 ) = ( 2 / 3 ) |
47 |
43 44 46
|
3eqtr3i |
⊢ ( ( 2 · 2 ) / ( 3 · 2 ) ) = ( 2 / 3 ) |
48 |
40 42 47
|
3eqtr2i |
⊢ ( ( 1 / 2 ) + ( 1 / 6 ) ) = ( 2 / 3 ) |
49 |
35 48
|
pm3.2i |
⊢ ( ( ( 1 / 2 ) − ( 1 / 6 ) ) = ( 1 / 3 ) ∧ ( ( 1 / 2 ) + ( 1 / 6 ) ) = ( 2 / 3 ) ) |