| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3cn | ⊢ 3  ∈  ℂ | 
						
							| 2 |  | 3ne0 | ⊢ 3  ≠  0 | 
						
							| 3 | 1 2 | reccli | ⊢ ( 1  /  3 )  ∈  ℂ | 
						
							| 4 |  | 6cn | ⊢ 6  ∈  ℂ | 
						
							| 5 |  | 6re | ⊢ 6  ∈  ℝ | 
						
							| 6 |  | 6pos | ⊢ 0  <  6 | 
						
							| 7 | 5 6 | gt0ne0ii | ⊢ 6  ≠  0 | 
						
							| 8 | 4 7 | reccli | ⊢ ( 1  /  6 )  ∈  ℂ | 
						
							| 9 |  | halfcn | ⊢ ( 1  /  2 )  ∈  ℂ | 
						
							| 10 | 3 9 | pncan3i | ⊢ ( ( 1  /  3 )  +  ( ( 1  /  2 )  −  ( 1  /  3 ) ) )  =  ( 1  /  2 ) | 
						
							| 11 |  | halfthird | ⊢ ( ( 1  /  2 )  −  ( 1  /  3 ) )  =  ( 1  /  6 ) | 
						
							| 12 | 11 | oveq2i | ⊢ ( ( 1  /  3 )  +  ( ( 1  /  2 )  −  ( 1  /  3 ) ) )  =  ( ( 1  /  3 )  +  ( 1  /  6 ) ) | 
						
							| 13 | 10 12 | eqtr3i | ⊢ ( 1  /  2 )  =  ( ( 1  /  3 )  +  ( 1  /  6 ) ) | 
						
							| 14 | 3 8 13 | mvrraddi | ⊢ ( ( 1  /  2 )  −  ( 1  /  6 ) )  =  ( 1  /  3 ) | 
						
							| 15 | 11 | oveq2i | ⊢ ( ( 1  /  2 )  +  ( ( 1  /  2 )  −  ( 1  /  3 ) ) )  =  ( ( 1  /  2 )  +  ( 1  /  6 ) ) | 
						
							| 16 | 9 9 3 | addsubassi | ⊢ ( ( ( 1  /  2 )  +  ( 1  /  2 ) )  −  ( 1  /  3 ) )  =  ( ( 1  /  2 )  +  ( ( 1  /  2 )  −  ( 1  /  3 ) ) ) | 
						
							| 17 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 18 | 17 1 2 | divcli | ⊢ ( 2  /  3 )  ∈  ℂ | 
						
							| 19 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 20 |  | 2halves | ⊢ ( 1  ∈  ℂ  →  ( ( 1  /  2 )  +  ( 1  /  2 ) )  =  1 ) | 
						
							| 21 | 19 20 | ax-mp | ⊢ ( ( 1  /  2 )  +  ( 1  /  2 ) )  =  1 | 
						
							| 22 |  | 2p1e3 | ⊢ ( 2  +  1 )  =  3 | 
						
							| 23 | 22 | oveq1i | ⊢ ( ( 2  +  1 )  /  3 )  =  ( 3  /  3 ) | 
						
							| 24 | 1 2 | dividi | ⊢ ( 3  /  3 )  =  1 | 
						
							| 25 | 23 24 | eqtri | ⊢ ( ( 2  +  1 )  /  3 )  =  1 | 
						
							| 26 | 17 19 1 2 | divdiri | ⊢ ( ( 2  +  1 )  /  3 )  =  ( ( 2  /  3 )  +  ( 1  /  3 ) ) | 
						
							| 27 | 21 25 26 | 3eqtr2i | ⊢ ( ( 1  /  2 )  +  ( 1  /  2 ) )  =  ( ( 2  /  3 )  +  ( 1  /  3 ) ) | 
						
							| 28 | 18 3 27 | mvrraddi | ⊢ ( ( ( 1  /  2 )  +  ( 1  /  2 ) )  −  ( 1  /  3 ) )  =  ( 2  /  3 ) | 
						
							| 29 | 16 28 | eqtr3i | ⊢ ( ( 1  /  2 )  +  ( ( 1  /  2 )  −  ( 1  /  3 ) ) )  =  ( 2  /  3 ) | 
						
							| 30 | 15 29 | eqtr3i | ⊢ ( ( 1  /  2 )  +  ( 1  /  6 ) )  =  ( 2  /  3 ) | 
						
							| 31 | 14 30 | pm3.2i | ⊢ ( ( ( 1  /  2 )  −  ( 1  /  6 ) )  =  ( 1  /  3 )  ∧  ( ( 1  /  2 )  +  ( 1  /  6 ) )  =  ( 2  /  3 ) ) |