Description: A positive number is greater than its half. (Contributed by NM, 28-Oct-2004) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | halfpos | ⊢ ( 𝐴 ∈ ℝ → ( 0 < 𝐴 ↔ ( 𝐴 / 2 ) < 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | halfpos2 | ⊢ ( 𝐴 ∈ ℝ → ( 0 < 𝐴 ↔ 0 < ( 𝐴 / 2 ) ) ) | |
| 2 | rehalfcl | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 / 2 ) ∈ ℝ ) | |
| 3 | 2 2 | ltaddposd | ⊢ ( 𝐴 ∈ ℝ → ( 0 < ( 𝐴 / 2 ) ↔ ( 𝐴 / 2 ) < ( ( 𝐴 / 2 ) + ( 𝐴 / 2 ) ) ) ) |
| 4 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 5 | 2halves | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 / 2 ) + ( 𝐴 / 2 ) ) = 𝐴 ) | |
| 6 | 4 5 | syl | ⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 / 2 ) + ( 𝐴 / 2 ) ) = 𝐴 ) |
| 7 | 6 | breq2d | ⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 / 2 ) < ( ( 𝐴 / 2 ) + ( 𝐴 / 2 ) ) ↔ ( 𝐴 / 2 ) < 𝐴 ) ) |
| 8 | 1 3 7 | 3bitrd | ⊢ ( 𝐴 ∈ ℝ → ( 0 < 𝐴 ↔ ( 𝐴 / 2 ) < 𝐴 ) ) |