Metamath Proof Explorer


Theorem halfpos

Description: A positive number is greater than its half. (Contributed by NM, 28-Oct-2004) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion halfpos ( 𝐴 ∈ ℝ → ( 0 < 𝐴 ↔ ( 𝐴 / 2 ) < 𝐴 ) )

Proof

Step Hyp Ref Expression
1 halfpos2 ( 𝐴 ∈ ℝ → ( 0 < 𝐴 ↔ 0 < ( 𝐴 / 2 ) ) )
2 rehalfcl ( 𝐴 ∈ ℝ → ( 𝐴 / 2 ) ∈ ℝ )
3 2 2 ltaddposd ( 𝐴 ∈ ℝ → ( 0 < ( 𝐴 / 2 ) ↔ ( 𝐴 / 2 ) < ( ( 𝐴 / 2 ) + ( 𝐴 / 2 ) ) ) )
4 recn ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ )
5 2halves ( 𝐴 ∈ ℂ → ( ( 𝐴 / 2 ) + ( 𝐴 / 2 ) ) = 𝐴 )
6 4 5 syl ( 𝐴 ∈ ℝ → ( ( 𝐴 / 2 ) + ( 𝐴 / 2 ) ) = 𝐴 )
7 6 breq2d ( 𝐴 ∈ ℝ → ( ( 𝐴 / 2 ) < ( ( 𝐴 / 2 ) + ( 𝐴 / 2 ) ) ↔ ( 𝐴 / 2 ) < 𝐴 ) )
8 1 3 7 3bitrd ( 𝐴 ∈ ℝ → ( 0 < 𝐴 ↔ ( 𝐴 / 2 ) < 𝐴 ) )