Description: A positive number is greater than its half. (Contributed by NM, 28-Oct-2004) (Proof shortened by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | halfpos | ⊢ ( 𝐴 ∈ ℝ → ( 0 < 𝐴 ↔ ( 𝐴 / 2 ) < 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | halfpos2 | ⊢ ( 𝐴 ∈ ℝ → ( 0 < 𝐴 ↔ 0 < ( 𝐴 / 2 ) ) ) | |
2 | rehalfcl | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 / 2 ) ∈ ℝ ) | |
3 | 2 2 | ltaddposd | ⊢ ( 𝐴 ∈ ℝ → ( 0 < ( 𝐴 / 2 ) ↔ ( 𝐴 / 2 ) < ( ( 𝐴 / 2 ) + ( 𝐴 / 2 ) ) ) ) |
4 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
5 | 2halves | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 / 2 ) + ( 𝐴 / 2 ) ) = 𝐴 ) | |
6 | 4 5 | syl | ⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 / 2 ) + ( 𝐴 / 2 ) ) = 𝐴 ) |
7 | 6 | breq2d | ⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 / 2 ) < ( ( 𝐴 / 2 ) + ( 𝐴 / 2 ) ) ↔ ( 𝐴 / 2 ) < 𝐴 ) ) |
8 | 1 3 7 | 3bitrd | ⊢ ( 𝐴 ∈ ℝ → ( 0 < 𝐴 ↔ ( 𝐴 / 2 ) < 𝐴 ) ) |