Metamath Proof Explorer


Theorem halfre

Description: One-half is real. (Contributed by David A. Wheeler, 8-Dec-2018)

Ref Expression
Assertion halfre ( 1 / 2 ) ∈ ℝ

Proof

Step Hyp Ref Expression
1 2re 2 ∈ ℝ
2 2ne0 2 ≠ 0
3 1 2 rereccli ( 1 / 2 ) ∈ ℝ