Metamath Proof Explorer


Theorem harf

Description: Functionality of the Hartogs function. (Contributed by Stefan O'Rear, 11-Feb-2015)

Ref Expression
Assertion harf har : V ⟶ On

Proof

Step Hyp Ref Expression
1 df-har har = ( 𝑥 ∈ V ↦ { 𝑦 ∈ On ∣ 𝑦𝑥 } )
2 hartogs ( 𝑥 ∈ V → { 𝑦 ∈ On ∣ 𝑦𝑥 } ∈ On )
3 1 2 fmpti har : V ⟶ On