Metamath Proof Explorer


Theorem hargch

Description: If A + ~~P A , then A is a GCH-set. The much simpler converse to gchhar . (Contributed by Mario Carneiro, 2-Jun-2015)

Ref Expression
Assertion hargch ( ( har ‘ 𝐴 ) ≈ 𝒫 𝐴𝐴 ∈ GCH )

Proof

Step Hyp Ref Expression
1 harcl ( har ‘ 𝐴 ) ∈ On
2 sdomdom ( 𝑥 ≺ ( har ‘ 𝐴 ) → 𝑥 ≼ ( har ‘ 𝐴 ) )
3 ondomen ( ( ( har ‘ 𝐴 ) ∈ On ∧ 𝑥 ≼ ( har ‘ 𝐴 ) ) → 𝑥 ∈ dom card )
4 1 2 3 sylancr ( 𝑥 ≺ ( har ‘ 𝐴 ) → 𝑥 ∈ dom card )
5 onenon ( ( har ‘ 𝐴 ) ∈ On → ( har ‘ 𝐴 ) ∈ dom card )
6 1 5 ax-mp ( har ‘ 𝐴 ) ∈ dom card
7 cardsdom2 ( ( 𝑥 ∈ dom card ∧ ( har ‘ 𝐴 ) ∈ dom card ) → ( ( card ‘ 𝑥 ) ∈ ( card ‘ ( har ‘ 𝐴 ) ) ↔ 𝑥 ≺ ( har ‘ 𝐴 ) ) )
8 4 6 7 sylancl ( 𝑥 ≺ ( har ‘ 𝐴 ) → ( ( card ‘ 𝑥 ) ∈ ( card ‘ ( har ‘ 𝐴 ) ) ↔ 𝑥 ≺ ( har ‘ 𝐴 ) ) )
9 8 ibir ( 𝑥 ≺ ( har ‘ 𝐴 ) → ( card ‘ 𝑥 ) ∈ ( card ‘ ( har ‘ 𝐴 ) ) )
10 harcard ( card ‘ ( har ‘ 𝐴 ) ) = ( har ‘ 𝐴 )
11 9 10 eleqtrdi ( 𝑥 ≺ ( har ‘ 𝐴 ) → ( card ‘ 𝑥 ) ∈ ( har ‘ 𝐴 ) )
12 elharval ( ( card ‘ 𝑥 ) ∈ ( har ‘ 𝐴 ) ↔ ( ( card ‘ 𝑥 ) ∈ On ∧ ( card ‘ 𝑥 ) ≼ 𝐴 ) )
13 12 simprbi ( ( card ‘ 𝑥 ) ∈ ( har ‘ 𝐴 ) → ( card ‘ 𝑥 ) ≼ 𝐴 )
14 11 13 syl ( 𝑥 ≺ ( har ‘ 𝐴 ) → ( card ‘ 𝑥 ) ≼ 𝐴 )
15 cardid2 ( 𝑥 ∈ dom card → ( card ‘ 𝑥 ) ≈ 𝑥 )
16 domen1 ( ( card ‘ 𝑥 ) ≈ 𝑥 → ( ( card ‘ 𝑥 ) ≼ 𝐴𝑥𝐴 ) )
17 4 15 16 3syl ( 𝑥 ≺ ( har ‘ 𝐴 ) → ( ( card ‘ 𝑥 ) ≼ 𝐴𝑥𝐴 ) )
18 14 17 mpbid ( 𝑥 ≺ ( har ‘ 𝐴 ) → 𝑥𝐴 )
19 domnsym ( 𝑥𝐴 → ¬ 𝐴𝑥 )
20 18 19 syl ( 𝑥 ≺ ( har ‘ 𝐴 ) → ¬ 𝐴𝑥 )
21 20 con2i ( 𝐴𝑥 → ¬ 𝑥 ≺ ( har ‘ 𝐴 ) )
22 sdomen2 ( ( har ‘ 𝐴 ) ≈ 𝒫 𝐴 → ( 𝑥 ≺ ( har ‘ 𝐴 ) ↔ 𝑥 ≺ 𝒫 𝐴 ) )
23 22 notbid ( ( har ‘ 𝐴 ) ≈ 𝒫 𝐴 → ( ¬ 𝑥 ≺ ( har ‘ 𝐴 ) ↔ ¬ 𝑥 ≺ 𝒫 𝐴 ) )
24 21 23 syl5ib ( ( har ‘ 𝐴 ) ≈ 𝒫 𝐴 → ( 𝐴𝑥 → ¬ 𝑥 ≺ 𝒫 𝐴 ) )
25 imnan ( ( 𝐴𝑥 → ¬ 𝑥 ≺ 𝒫 𝐴 ) ↔ ¬ ( 𝐴𝑥𝑥 ≺ 𝒫 𝐴 ) )
26 24 25 sylib ( ( har ‘ 𝐴 ) ≈ 𝒫 𝐴 → ¬ ( 𝐴𝑥𝑥 ≺ 𝒫 𝐴 ) )
27 26 alrimiv ( ( har ‘ 𝐴 ) ≈ 𝒫 𝐴 → ∀ 𝑥 ¬ ( 𝐴𝑥𝑥 ≺ 𝒫 𝐴 ) )
28 27 olcd ( ( har ‘ 𝐴 ) ≈ 𝒫 𝐴 → ( 𝐴 ∈ Fin ∨ ∀ 𝑥 ¬ ( 𝐴𝑥𝑥 ≺ 𝒫 𝐴 ) ) )
29 relen Rel ≈
30 29 brrelex2i ( ( har ‘ 𝐴 ) ≈ 𝒫 𝐴 → 𝒫 𝐴 ∈ V )
31 pwexb ( 𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V )
32 30 31 sylibr ( ( har ‘ 𝐴 ) ≈ 𝒫 𝐴𝐴 ∈ V )
33 elgch ( 𝐴 ∈ V → ( 𝐴 ∈ GCH ↔ ( 𝐴 ∈ Fin ∨ ∀ 𝑥 ¬ ( 𝐴𝑥𝑥 ≺ 𝒫 𝐴 ) ) ) )
34 32 33 syl ( ( har ‘ 𝐴 ) ≈ 𝒫 𝐴 → ( 𝐴 ∈ GCH ↔ ( 𝐴 ∈ Fin ∨ ∀ 𝑥 ¬ ( 𝐴𝑥𝑥 ≺ 𝒫 𝐴 ) ) ) )
35 28 34 mpbird ( ( har ‘ 𝐴 ) ≈ 𝒫 𝐴𝐴 ∈ GCH )