| Step |
Hyp |
Ref |
Expression |
| 1 |
|
harcl |
⊢ ( har ‘ 𝐴 ) ∈ On |
| 2 |
|
sdomdom |
⊢ ( 𝑥 ≺ ( har ‘ 𝐴 ) → 𝑥 ≼ ( har ‘ 𝐴 ) ) |
| 3 |
|
ondomen |
⊢ ( ( ( har ‘ 𝐴 ) ∈ On ∧ 𝑥 ≼ ( har ‘ 𝐴 ) ) → 𝑥 ∈ dom card ) |
| 4 |
1 2 3
|
sylancr |
⊢ ( 𝑥 ≺ ( har ‘ 𝐴 ) → 𝑥 ∈ dom card ) |
| 5 |
|
onenon |
⊢ ( ( har ‘ 𝐴 ) ∈ On → ( har ‘ 𝐴 ) ∈ dom card ) |
| 6 |
1 5
|
ax-mp |
⊢ ( har ‘ 𝐴 ) ∈ dom card |
| 7 |
|
cardsdom2 |
⊢ ( ( 𝑥 ∈ dom card ∧ ( har ‘ 𝐴 ) ∈ dom card ) → ( ( card ‘ 𝑥 ) ∈ ( card ‘ ( har ‘ 𝐴 ) ) ↔ 𝑥 ≺ ( har ‘ 𝐴 ) ) ) |
| 8 |
4 6 7
|
sylancl |
⊢ ( 𝑥 ≺ ( har ‘ 𝐴 ) → ( ( card ‘ 𝑥 ) ∈ ( card ‘ ( har ‘ 𝐴 ) ) ↔ 𝑥 ≺ ( har ‘ 𝐴 ) ) ) |
| 9 |
8
|
ibir |
⊢ ( 𝑥 ≺ ( har ‘ 𝐴 ) → ( card ‘ 𝑥 ) ∈ ( card ‘ ( har ‘ 𝐴 ) ) ) |
| 10 |
|
harcard |
⊢ ( card ‘ ( har ‘ 𝐴 ) ) = ( har ‘ 𝐴 ) |
| 11 |
9 10
|
eleqtrdi |
⊢ ( 𝑥 ≺ ( har ‘ 𝐴 ) → ( card ‘ 𝑥 ) ∈ ( har ‘ 𝐴 ) ) |
| 12 |
|
elharval |
⊢ ( ( card ‘ 𝑥 ) ∈ ( har ‘ 𝐴 ) ↔ ( ( card ‘ 𝑥 ) ∈ On ∧ ( card ‘ 𝑥 ) ≼ 𝐴 ) ) |
| 13 |
12
|
simprbi |
⊢ ( ( card ‘ 𝑥 ) ∈ ( har ‘ 𝐴 ) → ( card ‘ 𝑥 ) ≼ 𝐴 ) |
| 14 |
11 13
|
syl |
⊢ ( 𝑥 ≺ ( har ‘ 𝐴 ) → ( card ‘ 𝑥 ) ≼ 𝐴 ) |
| 15 |
|
cardid2 |
⊢ ( 𝑥 ∈ dom card → ( card ‘ 𝑥 ) ≈ 𝑥 ) |
| 16 |
|
domen1 |
⊢ ( ( card ‘ 𝑥 ) ≈ 𝑥 → ( ( card ‘ 𝑥 ) ≼ 𝐴 ↔ 𝑥 ≼ 𝐴 ) ) |
| 17 |
4 15 16
|
3syl |
⊢ ( 𝑥 ≺ ( har ‘ 𝐴 ) → ( ( card ‘ 𝑥 ) ≼ 𝐴 ↔ 𝑥 ≼ 𝐴 ) ) |
| 18 |
14 17
|
mpbid |
⊢ ( 𝑥 ≺ ( har ‘ 𝐴 ) → 𝑥 ≼ 𝐴 ) |
| 19 |
|
domnsym |
⊢ ( 𝑥 ≼ 𝐴 → ¬ 𝐴 ≺ 𝑥 ) |
| 20 |
18 19
|
syl |
⊢ ( 𝑥 ≺ ( har ‘ 𝐴 ) → ¬ 𝐴 ≺ 𝑥 ) |
| 21 |
20
|
con2i |
⊢ ( 𝐴 ≺ 𝑥 → ¬ 𝑥 ≺ ( har ‘ 𝐴 ) ) |
| 22 |
|
sdomen2 |
⊢ ( ( har ‘ 𝐴 ) ≈ 𝒫 𝐴 → ( 𝑥 ≺ ( har ‘ 𝐴 ) ↔ 𝑥 ≺ 𝒫 𝐴 ) ) |
| 23 |
22
|
notbid |
⊢ ( ( har ‘ 𝐴 ) ≈ 𝒫 𝐴 → ( ¬ 𝑥 ≺ ( har ‘ 𝐴 ) ↔ ¬ 𝑥 ≺ 𝒫 𝐴 ) ) |
| 24 |
21 23
|
imbitrid |
⊢ ( ( har ‘ 𝐴 ) ≈ 𝒫 𝐴 → ( 𝐴 ≺ 𝑥 → ¬ 𝑥 ≺ 𝒫 𝐴 ) ) |
| 25 |
|
imnan |
⊢ ( ( 𝐴 ≺ 𝑥 → ¬ 𝑥 ≺ 𝒫 𝐴 ) ↔ ¬ ( 𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴 ) ) |
| 26 |
24 25
|
sylib |
⊢ ( ( har ‘ 𝐴 ) ≈ 𝒫 𝐴 → ¬ ( 𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴 ) ) |
| 27 |
26
|
alrimiv |
⊢ ( ( har ‘ 𝐴 ) ≈ 𝒫 𝐴 → ∀ 𝑥 ¬ ( 𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴 ) ) |
| 28 |
27
|
olcd |
⊢ ( ( har ‘ 𝐴 ) ≈ 𝒫 𝐴 → ( 𝐴 ∈ Fin ∨ ∀ 𝑥 ¬ ( 𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴 ) ) ) |
| 29 |
|
relen |
⊢ Rel ≈ |
| 30 |
29
|
brrelex2i |
⊢ ( ( har ‘ 𝐴 ) ≈ 𝒫 𝐴 → 𝒫 𝐴 ∈ V ) |
| 31 |
|
pwexb |
⊢ ( 𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V ) |
| 32 |
30 31
|
sylibr |
⊢ ( ( har ‘ 𝐴 ) ≈ 𝒫 𝐴 → 𝐴 ∈ V ) |
| 33 |
|
elgch |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ GCH ↔ ( 𝐴 ∈ Fin ∨ ∀ 𝑥 ¬ ( 𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴 ) ) ) ) |
| 34 |
32 33
|
syl |
⊢ ( ( har ‘ 𝐴 ) ≈ 𝒫 𝐴 → ( 𝐴 ∈ GCH ↔ ( 𝐴 ∈ Fin ∨ ∀ 𝑥 ¬ ( 𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴 ) ) ) ) |
| 35 |
28 34
|
mpbird |
⊢ ( ( har ‘ 𝐴 ) ≈ 𝒫 𝐴 → 𝐴 ∈ GCH ) |