| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elnn0 | ⊢ ( 𝑁  ∈  ℕ0  ↔  ( 𝑁  ∈  ℕ  ∨  𝑁  =  0 ) ) | 
						
							| 2 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 3 |  | emre | ⊢ γ  ∈  ℝ | 
						
							| 4 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 5 |  | ere | ⊢ e  ∈  ℝ | 
						
							| 6 |  | egt2lt3 | ⊢ ( 2  <  e  ∧  e  <  3 ) | 
						
							| 7 | 6 | simpli | ⊢ 2  <  e | 
						
							| 8 | 4 5 7 | ltleii | ⊢ 2  ≤  e | 
						
							| 9 |  | 2rp | ⊢ 2  ∈  ℝ+ | 
						
							| 10 |  | epr | ⊢ e  ∈  ℝ+ | 
						
							| 11 |  | logleb | ⊢ ( ( 2  ∈  ℝ+  ∧  e  ∈  ℝ+ )  →  ( 2  ≤  e  ↔  ( log ‘ 2 )  ≤  ( log ‘ e ) ) ) | 
						
							| 12 | 9 10 11 | mp2an | ⊢ ( 2  ≤  e  ↔  ( log ‘ 2 )  ≤  ( log ‘ e ) ) | 
						
							| 13 | 8 12 | mpbi | ⊢ ( log ‘ 2 )  ≤  ( log ‘ e ) | 
						
							| 14 |  | loge | ⊢ ( log ‘ e )  =  1 | 
						
							| 15 | 13 14 | breqtri | ⊢ ( log ‘ 2 )  ≤  1 | 
						
							| 16 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 17 |  | relogcl | ⊢ ( 2  ∈  ℝ+  →  ( log ‘ 2 )  ∈  ℝ ) | 
						
							| 18 | 9 17 | ax-mp | ⊢ ( log ‘ 2 )  ∈  ℝ | 
						
							| 19 | 16 18 | subge0i | ⊢ ( 0  ≤  ( 1  −  ( log ‘ 2 ) )  ↔  ( log ‘ 2 )  ≤  1 ) | 
						
							| 20 | 15 19 | mpbir | ⊢ 0  ≤  ( 1  −  ( log ‘ 2 ) ) | 
						
							| 21 | 3 | leidi | ⊢ γ  ≤  γ | 
						
							| 22 |  | iccss | ⊢ ( ( ( 0  ∈  ℝ  ∧  γ  ∈  ℝ )  ∧  ( 0  ≤  ( 1  −  ( log ‘ 2 ) )  ∧  γ  ≤  γ ) )  →  ( ( 1  −  ( log ‘ 2 ) ) [,] γ )  ⊆  ( 0 [,] γ ) ) | 
						
							| 23 | 2 3 20 21 22 | mp4an | ⊢ ( ( 1  −  ( log ‘ 2 ) ) [,] γ )  ⊆  ( 0 [,] γ ) | 
						
							| 24 |  | harmonicbnd2 | ⊢ ( 𝑁  ∈  ℕ  →  ( Σ 𝑚  ∈  ( 1 ... 𝑁 ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑁  +  1 ) ) )  ∈  ( ( 1  −  ( log ‘ 2 ) ) [,] γ ) ) | 
						
							| 25 | 23 24 | sselid | ⊢ ( 𝑁  ∈  ℕ  →  ( Σ 𝑚  ∈  ( 1 ... 𝑁 ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑁  +  1 ) ) )  ∈  ( 0 [,] γ ) ) | 
						
							| 26 |  | oveq2 | ⊢ ( 𝑁  =  0  →  ( 1 ... 𝑁 )  =  ( 1 ... 0 ) ) | 
						
							| 27 |  | fz10 | ⊢ ( 1 ... 0 )  =  ∅ | 
						
							| 28 | 26 27 | eqtrdi | ⊢ ( 𝑁  =  0  →  ( 1 ... 𝑁 )  =  ∅ ) | 
						
							| 29 | 28 | sumeq1d | ⊢ ( 𝑁  =  0  →  Σ 𝑚  ∈  ( 1 ... 𝑁 ) ( 1  /  𝑚 )  =  Σ 𝑚  ∈  ∅ ( 1  /  𝑚 ) ) | 
						
							| 30 |  | sum0 | ⊢ Σ 𝑚  ∈  ∅ ( 1  /  𝑚 )  =  0 | 
						
							| 31 | 29 30 | eqtrdi | ⊢ ( 𝑁  =  0  →  Σ 𝑚  ∈  ( 1 ... 𝑁 ) ( 1  /  𝑚 )  =  0 ) | 
						
							| 32 |  | fv0p1e1 | ⊢ ( 𝑁  =  0  →  ( log ‘ ( 𝑁  +  1 ) )  =  ( log ‘ 1 ) ) | 
						
							| 33 |  | log1 | ⊢ ( log ‘ 1 )  =  0 | 
						
							| 34 | 32 33 | eqtrdi | ⊢ ( 𝑁  =  0  →  ( log ‘ ( 𝑁  +  1 ) )  =  0 ) | 
						
							| 35 | 31 34 | oveq12d | ⊢ ( 𝑁  =  0  →  ( Σ 𝑚  ∈  ( 1 ... 𝑁 ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑁  +  1 ) ) )  =  ( 0  −  0 ) ) | 
						
							| 36 |  | 0m0e0 | ⊢ ( 0  −  0 )  =  0 | 
						
							| 37 | 35 36 | eqtrdi | ⊢ ( 𝑁  =  0  →  ( Σ 𝑚  ∈  ( 1 ... 𝑁 ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑁  +  1 ) ) )  =  0 ) | 
						
							| 38 | 2 | leidi | ⊢ 0  ≤  0 | 
						
							| 39 |  | emgt0 | ⊢ 0  <  γ | 
						
							| 40 | 2 3 39 | ltleii | ⊢ 0  ≤  γ | 
						
							| 41 | 2 3 | elicc2i | ⊢ ( 0  ∈  ( 0 [,] γ )  ↔  ( 0  ∈  ℝ  ∧  0  ≤  0  ∧  0  ≤  γ ) ) | 
						
							| 42 | 2 38 40 41 | mpbir3an | ⊢ 0  ∈  ( 0 [,] γ ) | 
						
							| 43 | 37 42 | eqeltrdi | ⊢ ( 𝑁  =  0  →  ( Σ 𝑚  ∈  ( 1 ... 𝑁 ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑁  +  1 ) ) )  ∈  ( 0 [,] γ ) ) | 
						
							| 44 | 25 43 | jaoi | ⊢ ( ( 𝑁  ∈  ℕ  ∨  𝑁  =  0 )  →  ( Σ 𝑚  ∈  ( 1 ... 𝑁 ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑁  +  1 ) ) )  ∈  ( 0 [,] γ ) ) | 
						
							| 45 | 1 44 | sylbi | ⊢ ( 𝑁  ∈  ℕ0  →  ( Σ 𝑚  ∈  ( 1 ... 𝑁 ) ( 1  /  𝑚 )  −  ( log ‘ ( 𝑁  +  1 ) ) )  ∈  ( 0 [,] γ ) ) |