Step |
Hyp |
Ref |
Expression |
1 |
|
fzfid |
⊢ ( 𝐴 ∈ ℝ+ → ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∈ Fin ) |
2 |
|
elfznn |
⊢ ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) → 𝑚 ∈ ℕ ) |
3 |
2
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑚 ∈ ℕ ) |
4 |
3
|
nnrecred |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 1 / 𝑚 ) ∈ ℝ ) |
5 |
1 4
|
fsumrecl |
⊢ ( 𝐴 ∈ ℝ+ → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) ∈ ℝ ) |
6 |
5
|
recnd |
⊢ ( 𝐴 ∈ ℝ+ → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) ∈ ℂ ) |
7 |
|
relogcl |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ ) |
8 |
7
|
recnd |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℂ ) |
9 |
|
emre |
⊢ γ ∈ ℝ |
10 |
9
|
a1i |
⊢ ( 𝐴 ∈ ℝ+ → γ ∈ ℝ ) |
11 |
10
|
recnd |
⊢ ( 𝐴 ∈ ℝ+ → γ ∈ ℂ ) |
12 |
6 8 11
|
subsub4d |
⊢ ( 𝐴 ∈ ℝ+ → ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ 𝐴 ) ) − γ ) = ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ) |
13 |
12
|
fveq2d |
⊢ ( 𝐴 ∈ ℝ+ → ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ 𝐴 ) ) − γ ) ) = ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ) ) |
14 |
|
rpreccl |
⊢ ( 𝐴 ∈ ℝ+ → ( 1 / 𝐴 ) ∈ ℝ+ ) |
15 |
14
|
rpred |
⊢ ( 𝐴 ∈ ℝ+ → ( 1 / 𝐴 ) ∈ ℝ ) |
16 |
|
resubcl |
⊢ ( ( γ ∈ ℝ ∧ ( 1 / 𝐴 ) ∈ ℝ ) → ( γ − ( 1 / 𝐴 ) ) ∈ ℝ ) |
17 |
9 15 16
|
sylancr |
⊢ ( 𝐴 ∈ ℝ+ → ( γ − ( 1 / 𝐴 ) ) ∈ ℝ ) |
18 |
|
rprege0 |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) |
19 |
|
flge0nn0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ⌊ ‘ 𝐴 ) ∈ ℕ0 ) |
20 |
18 19
|
syl |
⊢ ( 𝐴 ∈ ℝ+ → ( ⌊ ‘ 𝐴 ) ∈ ℕ0 ) |
21 |
|
nn0p1nn |
⊢ ( ( ⌊ ‘ 𝐴 ) ∈ ℕ0 → ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℕ ) |
22 |
20 21
|
syl |
⊢ ( 𝐴 ∈ ℝ+ → ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℕ ) |
23 |
22
|
nnrpd |
⊢ ( 𝐴 ∈ ℝ+ → ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ+ ) |
24 |
|
relogcl |
⊢ ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ+ → ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ∈ ℝ ) |
25 |
23 24
|
syl |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ∈ ℝ ) |
26 |
5 25
|
resubcld |
⊢ ( 𝐴 ∈ ℝ+ → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ∈ ℝ ) |
27 |
5 7
|
resubcld |
⊢ ( 𝐴 ∈ ℝ+ → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ 𝐴 ) ) ∈ ℝ ) |
28 |
22
|
nnrecred |
⊢ ( 𝐴 ∈ ℝ+ → ( 1 / ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ∈ ℝ ) |
29 |
|
fzfid |
⊢ ( 𝐴 ∈ ℝ+ → ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ∈ Fin ) |
30 |
|
elfznn |
⊢ ( 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) → 𝑚 ∈ ℕ ) |
31 |
30
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) → 𝑚 ∈ ℕ ) |
32 |
31
|
nnrecred |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) → ( 1 / 𝑚 ) ∈ ℝ ) |
33 |
29 32
|
fsumrecl |
⊢ ( 𝐴 ∈ ℝ+ → Σ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ( 1 / 𝑚 ) ∈ ℝ ) |
34 |
33 25
|
resubcld |
⊢ ( 𝐴 ∈ ℝ+ → ( Σ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ∈ ℝ ) |
35 |
|
harmonicbnd |
⊢ ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℕ → ( Σ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ∈ ( γ [,] 1 ) ) |
36 |
22 35
|
syl |
⊢ ( 𝐴 ∈ ℝ+ → ( Σ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ∈ ( γ [,] 1 ) ) |
37 |
|
1re |
⊢ 1 ∈ ℝ |
38 |
9 37
|
elicc2i |
⊢ ( ( Σ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ∈ ( γ [,] 1 ) ↔ ( ( Σ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ∈ ℝ ∧ γ ≤ ( Σ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ∧ ( Σ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ≤ 1 ) ) |
39 |
38
|
simp2bi |
⊢ ( ( Σ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ∈ ( γ [,] 1 ) → γ ≤ ( Σ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ) |
40 |
36 39
|
syl |
⊢ ( 𝐴 ∈ ℝ+ → γ ≤ ( Σ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ) |
41 |
|
rpre |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) |
42 |
|
fllep1 |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ≤ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) |
43 |
41 42
|
syl |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ≤ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) |
44 |
|
rpregt0 |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) |
45 |
22
|
nnred |
⊢ ( 𝐴 ∈ ℝ+ → ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
46 |
22
|
nngt0d |
⊢ ( 𝐴 ∈ ℝ+ → 0 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) |
47 |
|
lerec |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ ∧ 0 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) → ( 𝐴 ≤ ( ( ⌊ ‘ 𝐴 ) + 1 ) ↔ ( 1 / ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ≤ ( 1 / 𝐴 ) ) ) |
48 |
44 45 46 47
|
syl12anc |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 ≤ ( ( ⌊ ‘ 𝐴 ) + 1 ) ↔ ( 1 / ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ≤ ( 1 / 𝐴 ) ) ) |
49 |
43 48
|
mpbid |
⊢ ( 𝐴 ∈ ℝ+ → ( 1 / ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ≤ ( 1 / 𝐴 ) ) |
50 |
10 28 34 15 40 49
|
le2subd |
⊢ ( 𝐴 ∈ ℝ+ → ( γ − ( 1 / 𝐴 ) ) ≤ ( ( Σ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) − ( 1 / ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ) |
51 |
33
|
recnd |
⊢ ( 𝐴 ∈ ℝ+ → Σ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ( 1 / 𝑚 ) ∈ ℂ ) |
52 |
25
|
recnd |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ∈ ℂ ) |
53 |
28
|
recnd |
⊢ ( 𝐴 ∈ ℝ+ → ( 1 / ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ∈ ℂ ) |
54 |
51 52 53
|
sub32d |
⊢ ( 𝐴 ∈ ℝ+ → ( ( Σ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) − ( 1 / ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) = ( ( Σ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ( 1 / 𝑚 ) − ( 1 / ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ) |
55 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
56 |
22 55
|
eleqtrdi |
⊢ ( 𝐴 ∈ ℝ+ → ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
57 |
32
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) → ( 1 / 𝑚 ) ∈ ℂ ) |
58 |
|
oveq2 |
⊢ ( 𝑚 = ( ( ⌊ ‘ 𝐴 ) + 1 ) → ( 1 / 𝑚 ) = ( 1 / ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) |
59 |
56 57 58
|
fsumm1 |
⊢ ( 𝐴 ∈ ℝ+ → Σ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ( 1 / 𝑚 ) = ( Σ 𝑚 ∈ ( 1 ... ( ( ( ⌊ ‘ 𝐴 ) + 1 ) − 1 ) ) ( 1 / 𝑚 ) + ( 1 / ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ) |
60 |
20
|
nn0cnd |
⊢ ( 𝐴 ∈ ℝ+ → ( ⌊ ‘ 𝐴 ) ∈ ℂ ) |
61 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
62 |
|
pncan |
⊢ ( ( ( ⌊ ‘ 𝐴 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( ⌊ ‘ 𝐴 ) + 1 ) − 1 ) = ( ⌊ ‘ 𝐴 ) ) |
63 |
60 61 62
|
sylancl |
⊢ ( 𝐴 ∈ ℝ+ → ( ( ( ⌊ ‘ 𝐴 ) + 1 ) − 1 ) = ( ⌊ ‘ 𝐴 ) ) |
64 |
63
|
oveq2d |
⊢ ( 𝐴 ∈ ℝ+ → ( 1 ... ( ( ( ⌊ ‘ 𝐴 ) + 1 ) − 1 ) ) = ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) |
65 |
64
|
sumeq1d |
⊢ ( 𝐴 ∈ ℝ+ → Σ 𝑚 ∈ ( 1 ... ( ( ( ⌊ ‘ 𝐴 ) + 1 ) − 1 ) ) ( 1 / 𝑚 ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) ) |
66 |
65
|
oveq1d |
⊢ ( 𝐴 ∈ ℝ+ → ( Σ 𝑚 ∈ ( 1 ... ( ( ( ⌊ ‘ 𝐴 ) + 1 ) − 1 ) ) ( 1 / 𝑚 ) + ( 1 / ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) = ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) + ( 1 / ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ) |
67 |
59 66
|
eqtrd |
⊢ ( 𝐴 ∈ ℝ+ → Σ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ( 1 / 𝑚 ) = ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) + ( 1 / ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ) |
68 |
6 53 67
|
mvrraddd |
⊢ ( 𝐴 ∈ ℝ+ → ( Σ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ( 1 / 𝑚 ) − ( 1 / ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) ) |
69 |
68
|
oveq1d |
⊢ ( 𝐴 ∈ ℝ+ → ( ( Σ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ( 1 / 𝑚 ) − ( 1 / ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) = ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ) |
70 |
54 69
|
eqtrd |
⊢ ( 𝐴 ∈ ℝ+ → ( ( Σ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) − ( 1 / ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) = ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ) |
71 |
50 70
|
breqtrd |
⊢ ( 𝐴 ∈ ℝ+ → ( γ − ( 1 / 𝐴 ) ) ≤ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ) |
72 |
|
logleb |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ+ ) → ( 𝐴 ≤ ( ( ⌊ ‘ 𝐴 ) + 1 ) ↔ ( log ‘ 𝐴 ) ≤ ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ) |
73 |
23 72
|
mpdan |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 ≤ ( ( ⌊ ‘ 𝐴 ) + 1 ) ↔ ( log ‘ 𝐴 ) ≤ ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ) |
74 |
43 73
|
mpbid |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ≤ ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) |
75 |
7 25 5 74
|
lesub2dd |
⊢ ( 𝐴 ∈ ℝ+ → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ≤ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ 𝐴 ) ) ) |
76 |
17 26 27 71 75
|
letrd |
⊢ ( 𝐴 ∈ ℝ+ → ( γ − ( 1 / 𝐴 ) ) ≤ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ 𝐴 ) ) ) |
77 |
27 15
|
resubcld |
⊢ ( 𝐴 ∈ ℝ+ → ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ 𝐴 ) ) − ( 1 / 𝐴 ) ) ∈ ℝ ) |
78 |
15
|
recnd |
⊢ ( 𝐴 ∈ ℝ+ → ( 1 / 𝐴 ) ∈ ℂ ) |
79 |
6 8 78
|
subsub4d |
⊢ ( 𝐴 ∈ ℝ+ → ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ 𝐴 ) ) − ( 1 / 𝐴 ) ) = ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + ( 1 / 𝐴 ) ) ) ) |
80 |
7 15
|
readdcld |
⊢ ( 𝐴 ∈ ℝ+ → ( ( log ‘ 𝐴 ) + ( 1 / 𝐴 ) ) ∈ ℝ ) |
81 |
|
id |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ+ ) |
82 |
23 81
|
relogdivd |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( ( ( ⌊ ‘ 𝐴 ) + 1 ) / 𝐴 ) ) = ( ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) − ( log ‘ 𝐴 ) ) ) |
83 |
|
rerpdivcl |
⊢ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ ∧ 𝐴 ∈ ℝ+ ) → ( ( ( ⌊ ‘ 𝐴 ) + 1 ) / 𝐴 ) ∈ ℝ ) |
84 |
45 83
|
mpancom |
⊢ ( 𝐴 ∈ ℝ+ → ( ( ( ⌊ ‘ 𝐴 ) + 1 ) / 𝐴 ) ∈ ℝ ) |
85 |
37
|
a1i |
⊢ ( 𝐴 ∈ ℝ+ → 1 ∈ ℝ ) |
86 |
85 15
|
readdcld |
⊢ ( 𝐴 ∈ ℝ+ → ( 1 + ( 1 / 𝐴 ) ) ∈ ℝ ) |
87 |
15
|
reefcld |
⊢ ( 𝐴 ∈ ℝ+ → ( exp ‘ ( 1 / 𝐴 ) ) ∈ ℝ ) |
88 |
61
|
a1i |
⊢ ( 𝐴 ∈ ℝ+ → 1 ∈ ℂ ) |
89 |
|
rpcnne0 |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) |
90 |
|
divdir |
⊢ ( ( ( ⌊ ‘ 𝐴 ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) → ( ( ( ⌊ ‘ 𝐴 ) + 1 ) / 𝐴 ) = ( ( ( ⌊ ‘ 𝐴 ) / 𝐴 ) + ( 1 / 𝐴 ) ) ) |
91 |
60 88 89 90
|
syl3anc |
⊢ ( 𝐴 ∈ ℝ+ → ( ( ( ⌊ ‘ 𝐴 ) + 1 ) / 𝐴 ) = ( ( ( ⌊ ‘ 𝐴 ) / 𝐴 ) + ( 1 / 𝐴 ) ) ) |
92 |
|
reflcl |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℝ ) |
93 |
41 92
|
syl |
⊢ ( 𝐴 ∈ ℝ+ → ( ⌊ ‘ 𝐴 ) ∈ ℝ ) |
94 |
|
rerpdivcl |
⊢ ( ( ( ⌊ ‘ 𝐴 ) ∈ ℝ ∧ 𝐴 ∈ ℝ+ ) → ( ( ⌊ ‘ 𝐴 ) / 𝐴 ) ∈ ℝ ) |
95 |
93 94
|
mpancom |
⊢ ( 𝐴 ∈ ℝ+ → ( ( ⌊ ‘ 𝐴 ) / 𝐴 ) ∈ ℝ ) |
96 |
|
flle |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) |
97 |
41 96
|
syl |
⊢ ( 𝐴 ∈ ℝ+ → ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) |
98 |
|
rpcn |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ ) |
99 |
98
|
mulid1d |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 · 1 ) = 𝐴 ) |
100 |
97 99
|
breqtrrd |
⊢ ( 𝐴 ∈ ℝ+ → ( ⌊ ‘ 𝐴 ) ≤ ( 𝐴 · 1 ) ) |
101 |
|
ledivmul |
⊢ ( ( ( ⌊ ‘ 𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( ( ( ⌊ ‘ 𝐴 ) / 𝐴 ) ≤ 1 ↔ ( ⌊ ‘ 𝐴 ) ≤ ( 𝐴 · 1 ) ) ) |
102 |
93 85 44 101
|
syl3anc |
⊢ ( 𝐴 ∈ ℝ+ → ( ( ( ⌊ ‘ 𝐴 ) / 𝐴 ) ≤ 1 ↔ ( ⌊ ‘ 𝐴 ) ≤ ( 𝐴 · 1 ) ) ) |
103 |
100 102
|
mpbird |
⊢ ( 𝐴 ∈ ℝ+ → ( ( ⌊ ‘ 𝐴 ) / 𝐴 ) ≤ 1 ) |
104 |
95 85 15 103
|
leadd1dd |
⊢ ( 𝐴 ∈ ℝ+ → ( ( ( ⌊ ‘ 𝐴 ) / 𝐴 ) + ( 1 / 𝐴 ) ) ≤ ( 1 + ( 1 / 𝐴 ) ) ) |
105 |
91 104
|
eqbrtrd |
⊢ ( 𝐴 ∈ ℝ+ → ( ( ( ⌊ ‘ 𝐴 ) + 1 ) / 𝐴 ) ≤ ( 1 + ( 1 / 𝐴 ) ) ) |
106 |
|
efgt1p |
⊢ ( ( 1 / 𝐴 ) ∈ ℝ+ → ( 1 + ( 1 / 𝐴 ) ) < ( exp ‘ ( 1 / 𝐴 ) ) ) |
107 |
14 106
|
syl |
⊢ ( 𝐴 ∈ ℝ+ → ( 1 + ( 1 / 𝐴 ) ) < ( exp ‘ ( 1 / 𝐴 ) ) ) |
108 |
86 87 107
|
ltled |
⊢ ( 𝐴 ∈ ℝ+ → ( 1 + ( 1 / 𝐴 ) ) ≤ ( exp ‘ ( 1 / 𝐴 ) ) ) |
109 |
84 86 87 105 108
|
letrd |
⊢ ( 𝐴 ∈ ℝ+ → ( ( ( ⌊ ‘ 𝐴 ) + 1 ) / 𝐴 ) ≤ ( exp ‘ ( 1 / 𝐴 ) ) ) |
110 |
|
rpdivcl |
⊢ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ+ ∧ 𝐴 ∈ ℝ+ ) → ( ( ( ⌊ ‘ 𝐴 ) + 1 ) / 𝐴 ) ∈ ℝ+ ) |
111 |
23 110
|
mpancom |
⊢ ( 𝐴 ∈ ℝ+ → ( ( ( ⌊ ‘ 𝐴 ) + 1 ) / 𝐴 ) ∈ ℝ+ ) |
112 |
15
|
rpefcld |
⊢ ( 𝐴 ∈ ℝ+ → ( exp ‘ ( 1 / 𝐴 ) ) ∈ ℝ+ ) |
113 |
111 112
|
logled |
⊢ ( 𝐴 ∈ ℝ+ → ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) / 𝐴 ) ≤ ( exp ‘ ( 1 / 𝐴 ) ) ↔ ( log ‘ ( ( ( ⌊ ‘ 𝐴 ) + 1 ) / 𝐴 ) ) ≤ ( log ‘ ( exp ‘ ( 1 / 𝐴 ) ) ) ) ) |
114 |
109 113
|
mpbid |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( ( ( ⌊ ‘ 𝐴 ) + 1 ) / 𝐴 ) ) ≤ ( log ‘ ( exp ‘ ( 1 / 𝐴 ) ) ) ) |
115 |
15
|
relogefd |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( exp ‘ ( 1 / 𝐴 ) ) ) = ( 1 / 𝐴 ) ) |
116 |
114 115
|
breqtrd |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( ( ( ⌊ ‘ 𝐴 ) + 1 ) / 𝐴 ) ) ≤ ( 1 / 𝐴 ) ) |
117 |
82 116
|
eqbrtrrd |
⊢ ( 𝐴 ∈ ℝ+ → ( ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) − ( log ‘ 𝐴 ) ) ≤ ( 1 / 𝐴 ) ) |
118 |
25 7 15
|
lesubadd2d |
⊢ ( 𝐴 ∈ ℝ+ → ( ( ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) − ( log ‘ 𝐴 ) ) ≤ ( 1 / 𝐴 ) ↔ ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ≤ ( ( log ‘ 𝐴 ) + ( 1 / 𝐴 ) ) ) ) |
119 |
117 118
|
mpbid |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ≤ ( ( log ‘ 𝐴 ) + ( 1 / 𝐴 ) ) ) |
120 |
25 80 5 119
|
lesub2dd |
⊢ ( 𝐴 ∈ ℝ+ → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + ( 1 / 𝐴 ) ) ) ≤ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ) |
121 |
79 120
|
eqbrtrd |
⊢ ( 𝐴 ∈ ℝ+ → ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ 𝐴 ) ) − ( 1 / 𝐴 ) ) ≤ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ) |
122 |
|
harmonicbnd3 |
⊢ ( ( ⌊ ‘ 𝐴 ) ∈ ℕ0 → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ∈ ( 0 [,] γ ) ) |
123 |
20 122
|
syl |
⊢ ( 𝐴 ∈ ℝ+ → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ∈ ( 0 [,] γ ) ) |
124 |
|
0re |
⊢ 0 ∈ ℝ |
125 |
124 9
|
elicc2i |
⊢ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ∈ ( 0 [,] γ ) ↔ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ∈ ℝ ∧ 0 ≤ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ∧ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ≤ γ ) ) |
126 |
125
|
simp3bi |
⊢ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ∈ ( 0 [,] γ ) → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ≤ γ ) |
127 |
123 126
|
syl |
⊢ ( 𝐴 ∈ ℝ+ → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ≤ γ ) |
128 |
77 26 10 121 127
|
letrd |
⊢ ( 𝐴 ∈ ℝ+ → ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ 𝐴 ) ) − ( 1 / 𝐴 ) ) ≤ γ ) |
129 |
27 15 10
|
lesubaddd |
⊢ ( 𝐴 ∈ ℝ+ → ( ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ 𝐴 ) ) − ( 1 / 𝐴 ) ) ≤ γ ↔ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ 𝐴 ) ) ≤ ( γ + ( 1 / 𝐴 ) ) ) ) |
130 |
128 129
|
mpbid |
⊢ ( 𝐴 ∈ ℝ+ → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ 𝐴 ) ) ≤ ( γ + ( 1 / 𝐴 ) ) ) |
131 |
27 10 15
|
absdifled |
⊢ ( 𝐴 ∈ ℝ+ → ( ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ 𝐴 ) ) − γ ) ) ≤ ( 1 / 𝐴 ) ↔ ( ( γ − ( 1 / 𝐴 ) ) ≤ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ 𝐴 ) ) ∧ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ 𝐴 ) ) ≤ ( γ + ( 1 / 𝐴 ) ) ) ) ) |
132 |
76 130 131
|
mpbir2and |
⊢ ( 𝐴 ∈ ℝ+ → ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ 𝐴 ) ) − γ ) ) ≤ ( 1 / 𝐴 ) ) |
133 |
13 132
|
eqbrtrrd |
⊢ ( 𝐴 ∈ ℝ+ → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ) ≤ ( 1 / 𝐴 ) ) |