Metamath Proof Explorer


Theorem harndom

Description: The Hartogs number of a set does not inject into that set. (Contributed by Stefan O'Rear, 11-Feb-2015) (Revised by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion harndom ¬ ( har ‘ 𝑋 ) ≼ 𝑋

Proof

Step Hyp Ref Expression
1 harcl ( har ‘ 𝑋 ) ∈ On
2 1 onirri ¬ ( har ‘ 𝑋 ) ∈ ( har ‘ 𝑋 )
3 elharval ( ( har ‘ 𝑋 ) ∈ ( har ‘ 𝑋 ) ↔ ( ( har ‘ 𝑋 ) ∈ On ∧ ( har ‘ 𝑋 ) ≼ 𝑋 ) )
4 1 3 mpbiran ( ( har ‘ 𝑋 ) ∈ ( har ‘ 𝑋 ) ↔ ( har ‘ 𝑋 ) ≼ 𝑋 )
5 2 4 mtbi ¬ ( har ‘ 𝑋 ) ≼ 𝑋