Step |
Hyp |
Ref |
Expression |
1 |
|
onelon |
⊢ ( ( 𝑧 ∈ On ∧ 𝑦 ∈ 𝑧 ) → 𝑦 ∈ On ) |
2 |
|
vex |
⊢ 𝑧 ∈ V |
3 |
|
onelss |
⊢ ( 𝑧 ∈ On → ( 𝑦 ∈ 𝑧 → 𝑦 ⊆ 𝑧 ) ) |
4 |
3
|
imp |
⊢ ( ( 𝑧 ∈ On ∧ 𝑦 ∈ 𝑧 ) → 𝑦 ⊆ 𝑧 ) |
5 |
|
ssdomg |
⊢ ( 𝑧 ∈ V → ( 𝑦 ⊆ 𝑧 → 𝑦 ≼ 𝑧 ) ) |
6 |
2 4 5
|
mpsyl |
⊢ ( ( 𝑧 ∈ On ∧ 𝑦 ∈ 𝑧 ) → 𝑦 ≼ 𝑧 ) |
7 |
1 6
|
jca |
⊢ ( ( 𝑧 ∈ On ∧ 𝑦 ∈ 𝑧 ) → ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝑧 ) ) |
8 |
|
domtr |
⊢ ( ( 𝑦 ≼ 𝑧 ∧ 𝑧 ≼ 𝐴 ) → 𝑦 ≼ 𝐴 ) |
9 |
8
|
anim2i |
⊢ ( ( 𝑦 ∈ On ∧ ( 𝑦 ≼ 𝑧 ∧ 𝑧 ≼ 𝐴 ) ) → ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴 ) ) |
10 |
9
|
anassrs |
⊢ ( ( ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝑧 ) ∧ 𝑧 ≼ 𝐴 ) → ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴 ) ) |
11 |
7 10
|
sylan |
⊢ ( ( ( 𝑧 ∈ On ∧ 𝑦 ∈ 𝑧 ) ∧ 𝑧 ≼ 𝐴 ) → ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴 ) ) |
12 |
11
|
exp31 |
⊢ ( 𝑧 ∈ On → ( 𝑦 ∈ 𝑧 → ( 𝑧 ≼ 𝐴 → ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴 ) ) ) ) |
13 |
12
|
com12 |
⊢ ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ On → ( 𝑧 ≼ 𝐴 → ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴 ) ) ) ) |
14 |
13
|
impd |
⊢ ( 𝑦 ∈ 𝑧 → ( ( 𝑧 ∈ On ∧ 𝑧 ≼ 𝐴 ) → ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴 ) ) ) |
15 |
|
breq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ≼ 𝐴 ↔ 𝑧 ≼ 𝐴 ) ) |
16 |
15
|
elrab |
⊢ ( 𝑧 ∈ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ↔ ( 𝑧 ∈ On ∧ 𝑧 ≼ 𝐴 ) ) |
17 |
|
breq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ≼ 𝐴 ↔ 𝑦 ≼ 𝐴 ) ) |
18 |
17
|
elrab |
⊢ ( 𝑦 ∈ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ↔ ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴 ) ) |
19 |
14 16 18
|
3imtr4g |
⊢ ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } → 𝑦 ∈ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ) ) |
20 |
19
|
imp |
⊢ ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ) → 𝑦 ∈ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ) |
21 |
20
|
gen2 |
⊢ ∀ 𝑦 ∀ 𝑧 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ) → 𝑦 ∈ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ) |
22 |
|
dftr2 |
⊢ ( Tr { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ↔ ∀ 𝑦 ∀ 𝑧 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ) → 𝑦 ∈ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ) ) |
23 |
21 22
|
mpbir |
⊢ Tr { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } |
24 |
|
ssrab2 |
⊢ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ⊆ On |
25 |
|
ordon |
⊢ Ord On |
26 |
|
trssord |
⊢ ( ( Tr { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ∧ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ⊆ On ∧ Ord On ) → Ord { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ) |
27 |
23 24 25 26
|
mp3an |
⊢ Ord { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } |
28 |
|
eqid |
⊢ { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } = { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } |
29 |
|
eqid |
⊢ { 〈 𝑠 , 𝑡 〉 ∣ ∃ 𝑤 ∈ 𝑦 ∃ 𝑧 ∈ 𝑦 ( ( 𝑠 = ( 𝑔 ‘ 𝑤 ) ∧ 𝑡 = ( 𝑔 ‘ 𝑧 ) ) ∧ 𝑤 E 𝑧 ) } = { 〈 𝑠 , 𝑡 〉 ∣ ∃ 𝑤 ∈ 𝑦 ∃ 𝑧 ∈ 𝑦 ( ( 𝑠 = ( 𝑔 ‘ 𝑤 ) ∧ 𝑡 = ( 𝑔 ‘ 𝑧 ) ) ∧ 𝑤 E 𝑧 ) } |
30 |
28 29
|
hartogslem2 |
⊢ ( 𝐴 ∈ 𝑉 → { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ∈ V ) |
31 |
|
elong |
⊢ ( { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ∈ V → ( { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ∈ On ↔ Ord { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ) ) |
32 |
30 31
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ( { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ∈ On ↔ Ord { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ) ) |
33 |
27 32
|
mpbiri |
⊢ ( 𝐴 ∈ 𝑉 → { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ∈ On ) |