Metamath Proof Explorer


Theorem harval

Description: Function value of the Hartogs function. (Contributed by Stefan O'Rear, 11-Feb-2015)

Ref Expression
Assertion harval ( 𝑋𝑉 → ( har ‘ 𝑋 ) = { 𝑦 ∈ On ∣ 𝑦𝑋 } )

Proof

Step Hyp Ref Expression
1 elex ( 𝑋𝑉𝑋 ∈ V )
2 breq2 ( 𝑥 = 𝑋 → ( 𝑦𝑥𝑦𝑋 ) )
3 2 rabbidv ( 𝑥 = 𝑋 → { 𝑦 ∈ On ∣ 𝑦𝑥 } = { 𝑦 ∈ On ∣ 𝑦𝑋 } )
4 df-har har = ( 𝑥 ∈ V ↦ { 𝑦 ∈ On ∣ 𝑦𝑥 } )
5 hartogs ( 𝑥 ∈ V → { 𝑦 ∈ On ∣ 𝑦𝑥 } ∈ On )
6 3 4 5 fvmpt3 ( 𝑋 ∈ V → ( har ‘ 𝑋 ) = { 𝑦 ∈ On ∣ 𝑦𝑋 } )
7 1 6 syl ( 𝑋𝑉 → ( har ‘ 𝑋 ) = { 𝑦 ∈ On ∣ 𝑦𝑋 } )