Description: Function value of the Hartogs function. (Contributed by Stefan O'Rear, 11-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | harval | ⊢ ( 𝑋 ∈ 𝑉 → ( har ‘ 𝑋 ) = { 𝑦 ∈ On ∣ 𝑦 ≼ 𝑋 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex | ⊢ ( 𝑋 ∈ 𝑉 → 𝑋 ∈ V ) | |
2 | breq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝑦 ≼ 𝑥 ↔ 𝑦 ≼ 𝑋 ) ) | |
3 | 2 | rabbidv | ⊢ ( 𝑥 = 𝑋 → { 𝑦 ∈ On ∣ 𝑦 ≼ 𝑥 } = { 𝑦 ∈ On ∣ 𝑦 ≼ 𝑋 } ) |
4 | df-har | ⊢ har = ( 𝑥 ∈ V ↦ { 𝑦 ∈ On ∣ 𝑦 ≼ 𝑥 } ) | |
5 | hartogs | ⊢ ( 𝑥 ∈ V → { 𝑦 ∈ On ∣ 𝑦 ≼ 𝑥 } ∈ On ) | |
6 | 3 4 5 | fvmpt3 | ⊢ ( 𝑋 ∈ V → ( har ‘ 𝑋 ) = { 𝑦 ∈ On ∣ 𝑦 ≼ 𝑋 } ) |
7 | 1 6 | syl | ⊢ ( 𝑋 ∈ 𝑉 → ( har ‘ 𝑋 ) = { 𝑦 ∈ On ∣ 𝑦 ≼ 𝑋 } ) |