Step |
Hyp |
Ref |
Expression |
1 |
|
harval |
⊢ ( 𝐴 ∈ dom card → ( har ‘ 𝐴 ) = { 𝑦 ∈ On ∣ 𝑦 ≼ 𝐴 } ) |
2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ dom card ∧ ( 𝑥 ∈ On ∧ 𝐴 ≺ 𝑥 ) ) → ( har ‘ 𝐴 ) = { 𝑦 ∈ On ∣ 𝑦 ≼ 𝐴 } ) |
3 |
|
sdomel |
⊢ ( ( 𝑦 ∈ On ∧ 𝑥 ∈ On ) → ( 𝑦 ≺ 𝑥 → 𝑦 ∈ 𝑥 ) ) |
4 |
|
domsdomtr |
⊢ ( ( 𝑦 ≼ 𝐴 ∧ 𝐴 ≺ 𝑥 ) → 𝑦 ≺ 𝑥 ) |
5 |
3 4
|
impel |
⊢ ( ( ( 𝑦 ∈ On ∧ 𝑥 ∈ On ) ∧ ( 𝑦 ≼ 𝐴 ∧ 𝐴 ≺ 𝑥 ) ) → 𝑦 ∈ 𝑥 ) |
6 |
5
|
an4s |
⊢ ( ( ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴 ) ∧ ( 𝑥 ∈ On ∧ 𝐴 ≺ 𝑥 ) ) → 𝑦 ∈ 𝑥 ) |
7 |
6
|
ancoms |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝐴 ≺ 𝑥 ) ∧ ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴 ) ) → 𝑦 ∈ 𝑥 ) |
8 |
7
|
3impb |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝐴 ≺ 𝑥 ) ∧ 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴 ) → 𝑦 ∈ 𝑥 ) |
9 |
8
|
rabssdv |
⊢ ( ( 𝑥 ∈ On ∧ 𝐴 ≺ 𝑥 ) → { 𝑦 ∈ On ∣ 𝑦 ≼ 𝐴 } ⊆ 𝑥 ) |
10 |
9
|
adantl |
⊢ ( ( 𝐴 ∈ dom card ∧ ( 𝑥 ∈ On ∧ 𝐴 ≺ 𝑥 ) ) → { 𝑦 ∈ On ∣ 𝑦 ≼ 𝐴 } ⊆ 𝑥 ) |
11 |
2 10
|
eqsstrd |
⊢ ( ( 𝐴 ∈ dom card ∧ ( 𝑥 ∈ On ∧ 𝐴 ≺ 𝑥 ) ) → ( har ‘ 𝐴 ) ⊆ 𝑥 ) |
12 |
11
|
expr |
⊢ ( ( 𝐴 ∈ dom card ∧ 𝑥 ∈ On ) → ( 𝐴 ≺ 𝑥 → ( har ‘ 𝐴 ) ⊆ 𝑥 ) ) |
13 |
12
|
ralrimiva |
⊢ ( 𝐴 ∈ dom card → ∀ 𝑥 ∈ On ( 𝐴 ≺ 𝑥 → ( har ‘ 𝐴 ) ⊆ 𝑥 ) ) |
14 |
|
ssintrab |
⊢ ( ( har ‘ 𝐴 ) ⊆ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ↔ ∀ 𝑥 ∈ On ( 𝐴 ≺ 𝑥 → ( har ‘ 𝐴 ) ⊆ 𝑥 ) ) |
15 |
13 14
|
sylibr |
⊢ ( 𝐴 ∈ dom card → ( har ‘ 𝐴 ) ⊆ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) |
16 |
|
breq2 |
⊢ ( 𝑥 = ( har ‘ 𝐴 ) → ( 𝐴 ≺ 𝑥 ↔ 𝐴 ≺ ( har ‘ 𝐴 ) ) ) |
17 |
|
harcl |
⊢ ( har ‘ 𝐴 ) ∈ On |
18 |
17
|
a1i |
⊢ ( 𝐴 ∈ dom card → ( har ‘ 𝐴 ) ∈ On ) |
19 |
|
harsdom |
⊢ ( 𝐴 ∈ dom card → 𝐴 ≺ ( har ‘ 𝐴 ) ) |
20 |
16 18 19
|
elrabd |
⊢ ( 𝐴 ∈ dom card → ( har ‘ 𝐴 ) ∈ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) |
21 |
|
intss1 |
⊢ ( ( har ‘ 𝐴 ) ∈ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } → ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ⊆ ( har ‘ 𝐴 ) ) |
22 |
20 21
|
syl |
⊢ ( 𝐴 ∈ dom card → ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ⊆ ( har ‘ 𝐴 ) ) |
23 |
15 22
|
eqssd |
⊢ ( 𝐴 ∈ dom card → ( har ‘ 𝐴 ) = ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) |