Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } = { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } |
2 |
|
eqid |
⊢ { 〈 𝑠 , 𝑡 〉 ∣ ∃ 𝑤 ∈ 𝑦 ∃ 𝑧 ∈ 𝑦 ( ( 𝑠 = ( 𝑓 ‘ 𝑤 ) ∧ 𝑡 = ( 𝑓 ‘ 𝑧 ) ) ∧ 𝑤 E 𝑧 ) } = { 〈 𝑠 , 𝑡 〉 ∣ ∃ 𝑤 ∈ 𝑦 ∃ 𝑧 ∈ 𝑦 ( ( 𝑠 = ( 𝑓 ‘ 𝑤 ) ∧ 𝑡 = ( 𝑓 ‘ 𝑧 ) ) ∧ 𝑤 E 𝑧 ) } |
3 |
1 2
|
hartogslem1 |
⊢ ( dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ⊆ 𝒫 ( 𝑋 × 𝑋 ) ∧ Fun { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ∧ ( 𝑋 ∈ 𝑉 → ran { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } = { 𝑥 ∈ On ∣ 𝑥 ≼ 𝑋 } ) ) |
4 |
3
|
simp2i |
⊢ Fun { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } |
5 |
3
|
simp1i |
⊢ dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ⊆ 𝒫 ( 𝑋 × 𝑋 ) |
6 |
|
sqxpexg |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 × 𝑋 ) ∈ V ) |
7 |
6
|
pwexd |
⊢ ( 𝑋 ∈ 𝑉 → 𝒫 ( 𝑋 × 𝑋 ) ∈ V ) |
8 |
|
ssexg |
⊢ ( ( dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ⊆ 𝒫 ( 𝑋 × 𝑋 ) ∧ 𝒫 ( 𝑋 × 𝑋 ) ∈ V ) → dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ∈ V ) |
9 |
5 7 8
|
sylancr |
⊢ ( 𝑋 ∈ 𝑉 → dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ∈ V ) |
10 |
|
funex |
⊢ ( ( Fun { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ∧ dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ∈ V ) → { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ∈ V ) |
11 |
4 9 10
|
sylancr |
⊢ ( 𝑋 ∈ 𝑉 → { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ∈ V ) |
12 |
|
funfn |
⊢ ( Fun { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ↔ { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } Fn dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ) |
13 |
4 12
|
mpbi |
⊢ { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } Fn dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } |
14 |
13
|
a1i |
⊢ ( 𝑋 ∈ 𝑉 → { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } Fn dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ) |
15 |
3
|
simp3i |
⊢ ( 𝑋 ∈ 𝑉 → ran { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } = { 𝑥 ∈ On ∣ 𝑥 ≼ 𝑋 } ) |
16 |
|
harval |
⊢ ( 𝑋 ∈ 𝑉 → ( har ‘ 𝑋 ) = { 𝑥 ∈ On ∣ 𝑥 ≼ 𝑋 } ) |
17 |
15 16
|
eqtr4d |
⊢ ( 𝑋 ∈ 𝑉 → ran { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } = ( har ‘ 𝑋 ) ) |
18 |
|
df-fo |
⊢ ( { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } : dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } –onto→ ( har ‘ 𝑋 ) ↔ ( { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } Fn dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ∧ ran { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } = ( har ‘ 𝑋 ) ) ) |
19 |
14 17 18
|
sylanbrc |
⊢ ( 𝑋 ∈ 𝑉 → { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } : dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } –onto→ ( har ‘ 𝑋 ) ) |
20 |
|
fowdom |
⊢ ( ( { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ∈ V ∧ { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } : dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } –onto→ ( har ‘ 𝑋 ) ) → ( har ‘ 𝑋 ) ≼* dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ) |
21 |
11 19 20
|
syl2anc |
⊢ ( 𝑋 ∈ 𝑉 → ( har ‘ 𝑋 ) ≼* dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ) |
22 |
|
ssdomg |
⊢ ( 𝒫 ( 𝑋 × 𝑋 ) ∈ V → ( dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ⊆ 𝒫 ( 𝑋 × 𝑋 ) → dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ≼ 𝒫 ( 𝑋 × 𝑋 ) ) ) |
23 |
7 5 22
|
mpisyl |
⊢ ( 𝑋 ∈ 𝑉 → dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ≼ 𝒫 ( 𝑋 × 𝑋 ) ) |
24 |
|
domwdom |
⊢ ( dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ≼ 𝒫 ( 𝑋 × 𝑋 ) → dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ≼* 𝒫 ( 𝑋 × 𝑋 ) ) |
25 |
23 24
|
syl |
⊢ ( 𝑋 ∈ 𝑉 → dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ≼* 𝒫 ( 𝑋 × 𝑋 ) ) |
26 |
|
wdomtr |
⊢ ( ( ( har ‘ 𝑋 ) ≼* dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ∧ dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ≼* 𝒫 ( 𝑋 × 𝑋 ) ) → ( har ‘ 𝑋 ) ≼* 𝒫 ( 𝑋 × 𝑋 ) ) |
27 |
21 25 26
|
syl2anc |
⊢ ( 𝑋 ∈ 𝑉 → ( har ‘ 𝑋 ) ≼* 𝒫 ( 𝑋 × 𝑋 ) ) |