Step |
Hyp |
Ref |
Expression |
1 |
|
domtr |
⊢ ( ( 𝑦 ≼ 𝑋 ∧ 𝑋 ≼ 𝑌 ) → 𝑦 ≼ 𝑌 ) |
2 |
1
|
expcom |
⊢ ( 𝑋 ≼ 𝑌 → ( 𝑦 ≼ 𝑋 → 𝑦 ≼ 𝑌 ) ) |
3 |
2
|
adantr |
⊢ ( ( 𝑋 ≼ 𝑌 ∧ 𝑦 ∈ On ) → ( 𝑦 ≼ 𝑋 → 𝑦 ≼ 𝑌 ) ) |
4 |
3
|
ss2rabdv |
⊢ ( 𝑋 ≼ 𝑌 → { 𝑦 ∈ On ∣ 𝑦 ≼ 𝑋 } ⊆ { 𝑦 ∈ On ∣ 𝑦 ≼ 𝑌 } ) |
5 |
|
reldom |
⊢ Rel ≼ |
6 |
5
|
brrelex1i |
⊢ ( 𝑋 ≼ 𝑌 → 𝑋 ∈ V ) |
7 |
|
harval |
⊢ ( 𝑋 ∈ V → ( har ‘ 𝑋 ) = { 𝑦 ∈ On ∣ 𝑦 ≼ 𝑋 } ) |
8 |
6 7
|
syl |
⊢ ( 𝑋 ≼ 𝑌 → ( har ‘ 𝑋 ) = { 𝑦 ∈ On ∣ 𝑦 ≼ 𝑋 } ) |
9 |
5
|
brrelex2i |
⊢ ( 𝑋 ≼ 𝑌 → 𝑌 ∈ V ) |
10 |
|
harval |
⊢ ( 𝑌 ∈ V → ( har ‘ 𝑌 ) = { 𝑦 ∈ On ∣ 𝑦 ≼ 𝑌 } ) |
11 |
9 10
|
syl |
⊢ ( 𝑋 ≼ 𝑌 → ( har ‘ 𝑌 ) = { 𝑦 ∈ On ∣ 𝑦 ≼ 𝑌 } ) |
12 |
4 8 11
|
3sstr4d |
⊢ ( 𝑋 ≼ 𝑌 → ( har ‘ 𝑋 ) ⊆ ( har ‘ 𝑌 ) ) |