Metamath Proof Explorer


Theorem harword

Description: Weak ordering property of the Hartogs function. (Contributed by Stefan O'Rear, 14-Feb-2015)

Ref Expression
Assertion harword ( 𝑋𝑌 → ( har ‘ 𝑋 ) ⊆ ( har ‘ 𝑌 ) )

Proof

Step Hyp Ref Expression
1 domtr ( ( 𝑦𝑋𝑋𝑌 ) → 𝑦𝑌 )
2 1 expcom ( 𝑋𝑌 → ( 𝑦𝑋𝑦𝑌 ) )
3 2 adantr ( ( 𝑋𝑌𝑦 ∈ On ) → ( 𝑦𝑋𝑦𝑌 ) )
4 3 ss2rabdv ( 𝑋𝑌 → { 𝑦 ∈ On ∣ 𝑦𝑋 } ⊆ { 𝑦 ∈ On ∣ 𝑦𝑌 } )
5 reldom Rel ≼
6 5 brrelex1i ( 𝑋𝑌𝑋 ∈ V )
7 harval ( 𝑋 ∈ V → ( har ‘ 𝑋 ) = { 𝑦 ∈ On ∣ 𝑦𝑋 } )
8 6 7 syl ( 𝑋𝑌 → ( har ‘ 𝑋 ) = { 𝑦 ∈ On ∣ 𝑦𝑋 } )
9 5 brrelex2i ( 𝑋𝑌𝑌 ∈ V )
10 harval ( 𝑌 ∈ V → ( har ‘ 𝑌 ) = { 𝑦 ∈ On ∣ 𝑦𝑌 } )
11 9 10 syl ( 𝑋𝑌 → ( har ‘ 𝑌 ) = { 𝑦 ∈ On ∣ 𝑦𝑌 } )
12 4 8 11 3sstr4d ( 𝑋𝑌 → ( har ‘ 𝑋 ) ⊆ ( har ‘ 𝑌 ) )