Step |
Hyp |
Ref |
Expression |
1 |
|
hash1elsn.1 |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) = 1 ) |
2 |
|
hash1elsn.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) |
3 |
|
hash1elsn.3 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
4 |
|
hashen1 |
⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) = 1 ↔ 𝐴 ≈ 1o ) ) |
5 |
3 4
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) = 1 ↔ 𝐴 ≈ 1o ) ) |
6 |
1 5
|
mpbid |
⊢ ( 𝜑 → 𝐴 ≈ 1o ) |
7 |
|
en1 |
⊢ ( 𝐴 ≈ 1o ↔ ∃ 𝑥 𝐴 = { 𝑥 } ) |
8 |
6 7
|
sylib |
⊢ ( 𝜑 → ∃ 𝑥 𝐴 = { 𝑥 } ) |
9 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 = { 𝑥 } ) → 𝐴 = { 𝑥 } ) |
10 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = { 𝑥 } ) → 𝐵 ∈ 𝐴 ) |
11 |
10 9
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝐴 = { 𝑥 } ) → 𝐵 ∈ { 𝑥 } ) |
12 |
|
elsni |
⊢ ( 𝐵 ∈ { 𝑥 } → 𝐵 = 𝑥 ) |
13 |
11 12
|
syl |
⊢ ( ( 𝜑 ∧ 𝐴 = { 𝑥 } ) → 𝐵 = 𝑥 ) |
14 |
13
|
sneqd |
⊢ ( ( 𝜑 ∧ 𝐴 = { 𝑥 } ) → { 𝐵 } = { 𝑥 } ) |
15 |
9 14
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝐴 = { 𝑥 } ) → 𝐴 = { 𝐵 } ) |
16 |
8 15
|
exlimddv |
⊢ ( 𝜑 → 𝐴 = { 𝐵 } ) |