Metamath Proof Explorer


Theorem hash1elsn

Description: A set of size 1 with a known element is the singleton of that element. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses hash1elsn.1 ( 𝜑 → ( ♯ ‘ 𝐴 ) = 1 )
hash1elsn.2 ( 𝜑𝐵𝐴 )
hash1elsn.3 ( 𝜑𝐴𝑉 )
Assertion hash1elsn ( 𝜑𝐴 = { 𝐵 } )

Proof

Step Hyp Ref Expression
1 hash1elsn.1 ( 𝜑 → ( ♯ ‘ 𝐴 ) = 1 )
2 hash1elsn.2 ( 𝜑𝐵𝐴 )
3 hash1elsn.3 ( 𝜑𝐴𝑉 )
4 hashen1 ( 𝐴𝑉 → ( ( ♯ ‘ 𝐴 ) = 1 ↔ 𝐴 ≈ 1o ) )
5 3 4 syl ( 𝜑 → ( ( ♯ ‘ 𝐴 ) = 1 ↔ 𝐴 ≈ 1o ) )
6 1 5 mpbid ( 𝜑𝐴 ≈ 1o )
7 en1 ( 𝐴 ≈ 1o ↔ ∃ 𝑥 𝐴 = { 𝑥 } )
8 6 7 sylib ( 𝜑 → ∃ 𝑥 𝐴 = { 𝑥 } )
9 simpr ( ( 𝜑𝐴 = { 𝑥 } ) → 𝐴 = { 𝑥 } )
10 2 adantr ( ( 𝜑𝐴 = { 𝑥 } ) → 𝐵𝐴 )
11 10 9 eleqtrd ( ( 𝜑𝐴 = { 𝑥 } ) → 𝐵 ∈ { 𝑥 } )
12 elsni ( 𝐵 ∈ { 𝑥 } → 𝐵 = 𝑥 )
13 11 12 syl ( ( 𝜑𝐴 = { 𝑥 } ) → 𝐵 = 𝑥 )
14 13 sneqd ( ( 𝜑𝐴 = { 𝑥 } ) → { 𝐵 } = { 𝑥 } )
15 9 14 eqtr4d ( ( 𝜑𝐴 = { 𝑥 } ) → 𝐴 = { 𝐵 } )
16 8 15 exlimddv ( 𝜑𝐴 = { 𝐵 } )