| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hash1elsn.1 |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) = 1 ) |
| 2 |
|
hash1elsn.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) |
| 3 |
|
hash1elsn.3 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 4 |
|
hashen1 |
⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) = 1 ↔ 𝐴 ≈ 1o ) ) |
| 5 |
3 4
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) = 1 ↔ 𝐴 ≈ 1o ) ) |
| 6 |
1 5
|
mpbid |
⊢ ( 𝜑 → 𝐴 ≈ 1o ) |
| 7 |
|
en1 |
⊢ ( 𝐴 ≈ 1o ↔ ∃ 𝑥 𝐴 = { 𝑥 } ) |
| 8 |
6 7
|
sylib |
⊢ ( 𝜑 → ∃ 𝑥 𝐴 = { 𝑥 } ) |
| 9 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 = { 𝑥 } ) → 𝐴 = { 𝑥 } ) |
| 10 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = { 𝑥 } ) → 𝐵 ∈ 𝐴 ) |
| 11 |
10 9
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝐴 = { 𝑥 } ) → 𝐵 ∈ { 𝑥 } ) |
| 12 |
|
elsni |
⊢ ( 𝐵 ∈ { 𝑥 } → 𝐵 = 𝑥 ) |
| 13 |
11 12
|
syl |
⊢ ( ( 𝜑 ∧ 𝐴 = { 𝑥 } ) → 𝐵 = 𝑥 ) |
| 14 |
13
|
sneqd |
⊢ ( ( 𝜑 ∧ 𝐴 = { 𝑥 } ) → { 𝐵 } = { 𝑥 } ) |
| 15 |
9 14
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝐴 = { 𝑥 } ) → 𝐴 = { 𝐵 } ) |
| 16 |
8 15
|
exlimddv |
⊢ ( 𝜑 → 𝐴 = { 𝐵 } ) |