Description: If the size of a set is 1 the set is not empty. (Contributed by AV, 23-Dec-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | hash1n0 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ♯ ‘ 𝐴 ) = 1 ) → 𝐴 ≠ ∅ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hash1snb | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) = 1 ↔ ∃ 𝑎 𝐴 = { 𝑎 } ) ) | |
2 | id | ⊢ ( 𝐴 = { 𝑎 } → 𝐴 = { 𝑎 } ) | |
3 | vex | ⊢ 𝑎 ∈ V | |
4 | 3 | snnz | ⊢ { 𝑎 } ≠ ∅ |
5 | 4 | a1i | ⊢ ( 𝐴 = { 𝑎 } → { 𝑎 } ≠ ∅ ) |
6 | 2 5 | eqnetrd | ⊢ ( 𝐴 = { 𝑎 } → 𝐴 ≠ ∅ ) |
7 | 6 | exlimiv | ⊢ ( ∃ 𝑎 𝐴 = { 𝑎 } → 𝐴 ≠ ∅ ) |
8 | 1 7 | syl6bi | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) = 1 → 𝐴 ≠ ∅ ) ) |
9 | 8 | imp | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ♯ ‘ 𝐴 ) = 1 ) → 𝐴 ≠ ∅ ) |