Metamath Proof Explorer


Theorem hash1n0

Description: If the size of a set is 1 the set is not empty. (Contributed by AV, 23-Dec-2020)

Ref Expression
Assertion hash1n0 ( ( 𝐴𝑉 ∧ ( ♯ ‘ 𝐴 ) = 1 ) → 𝐴 ≠ ∅ )

Proof

Step Hyp Ref Expression
1 hash1snb ( 𝐴𝑉 → ( ( ♯ ‘ 𝐴 ) = 1 ↔ ∃ 𝑎 𝐴 = { 𝑎 } ) )
2 id ( 𝐴 = { 𝑎 } → 𝐴 = { 𝑎 } )
3 vex 𝑎 ∈ V
4 3 snnz { 𝑎 } ≠ ∅
5 4 a1i ( 𝐴 = { 𝑎 } → { 𝑎 } ≠ ∅ )
6 2 5 eqnetrd ( 𝐴 = { 𝑎 } → 𝐴 ≠ ∅ )
7 6 exlimiv ( ∃ 𝑎 𝐴 = { 𝑎 } → 𝐴 ≠ ∅ )
8 1 7 syl6bi ( 𝐴𝑉 → ( ( ♯ ‘ 𝐴 ) = 1 → 𝐴 ≠ ∅ ) )
9 8 imp ( ( 𝐴𝑉 ∧ ( ♯ ‘ 𝐴 ) = 1 ) → 𝐴 ≠ ∅ )