Metamath Proof Explorer


Theorem hash2

Description: Size of a finite ordinal. (Contributed by Mario Carneiro, 5-Jan-2016)

Ref Expression
Assertion hash2 ( ♯ ‘ 2o ) = 2

Proof

Step Hyp Ref Expression
1 1onn 1o ∈ ω
2 df-2o 2o = suc 1o
3 hash1 ( ♯ ‘ 1o ) = 1
4 1p1e2 ( 1 + 1 ) = 2
5 1 2 3 4 hashp1i ( ♯ ‘ 2o ) = 2