| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hash2iun.a | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 2 |  | hash2iun.b | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  Fin ) | 
						
							| 3 |  | hash2iun.c | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  →  𝐶  ∈  Fin ) | 
						
							| 4 |  | hash2iun.da | ⊢ ( 𝜑  →  Disj  𝑥  ∈  𝐴 ∪  𝑦  ∈  𝐵 𝐶 ) | 
						
							| 5 |  | hash2iun.db | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  Disj  𝑦  ∈  𝐵 𝐶 ) | 
						
							| 6 | 3 | 3expa | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  →  𝐶  ∈  Fin ) | 
						
							| 7 | 6 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ∀ 𝑦  ∈  𝐵 𝐶  ∈  Fin ) | 
						
							| 8 |  | iunfi | ⊢ ( ( 𝐵  ∈  Fin  ∧  ∀ 𝑦  ∈  𝐵 𝐶  ∈  Fin )  →  ∪  𝑦  ∈  𝐵 𝐶  ∈  Fin ) | 
						
							| 9 | 2 7 8 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ∪  𝑦  ∈  𝐵 𝐶  ∈  Fin ) | 
						
							| 10 | 1 9 4 | hashiun | ⊢ ( 𝜑  →  ( ♯ ‘ ∪  𝑥  ∈  𝐴 ∪  𝑦  ∈  𝐵 𝐶 )  =  Σ 𝑥  ∈  𝐴 ( ♯ ‘ ∪  𝑦  ∈  𝐵 𝐶 ) ) | 
						
							| 11 | 2 6 5 | hashiun | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ♯ ‘ ∪  𝑦  ∈  𝐵 𝐶 )  =  Σ 𝑦  ∈  𝐵 ( ♯ ‘ 𝐶 ) ) | 
						
							| 12 | 11 | sumeq2dv | ⊢ ( 𝜑  →  Σ 𝑥  ∈  𝐴 ( ♯ ‘ ∪  𝑦  ∈  𝐵 𝐶 )  =  Σ 𝑥  ∈  𝐴 Σ 𝑦  ∈  𝐵 ( ♯ ‘ 𝐶 ) ) | 
						
							| 13 | 10 12 | eqtrd | ⊢ ( 𝜑  →  ( ♯ ‘ ∪  𝑥  ∈  𝐴 ∪  𝑦  ∈  𝐵 𝐶 )  =  Σ 𝑥  ∈  𝐴 Σ 𝑦  ∈  𝐵 ( ♯ ‘ 𝐶 ) ) |