| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hash2iun1dif1.a | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 2 |  | hash2iun1dif1.b | ⊢ 𝐵  =  ( 𝐴  ∖  { 𝑥 } ) | 
						
							| 3 |  | hash2iun1dif1.c | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  →  𝐶  ∈  Fin ) | 
						
							| 4 |  | hash2iun1dif1.da | ⊢ ( 𝜑  →  Disj  𝑥  ∈  𝐴 ∪  𝑦  ∈  𝐵 𝐶 ) | 
						
							| 5 |  | hash2iun1dif1.db | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  Disj  𝑦  ∈  𝐵 𝐶 ) | 
						
							| 6 |  | hash2iun1dif1.1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  →  ( ♯ ‘ 𝐶 )  =  1 ) | 
						
							| 7 |  | diffi | ⊢ ( 𝐴  ∈  Fin  →  ( 𝐴  ∖  { 𝑥 } )  ∈  Fin ) | 
						
							| 8 | 1 7 | syl | ⊢ ( 𝜑  →  ( 𝐴  ∖  { 𝑥 } )  ∈  Fin ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝐴  ∖  { 𝑥 } )  ∈  Fin ) | 
						
							| 10 | 2 9 | eqeltrid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  Fin ) | 
						
							| 11 | 1 10 3 4 5 | hash2iun | ⊢ ( 𝜑  →  ( ♯ ‘ ∪  𝑥  ∈  𝐴 ∪  𝑦  ∈  𝐵 𝐶 )  =  Σ 𝑥  ∈  𝐴 Σ 𝑦  ∈  𝐵 ( ♯ ‘ 𝐶 ) ) | 
						
							| 12 | 6 | 2sumeq2dv | ⊢ ( 𝜑  →  Σ 𝑥  ∈  𝐴 Σ 𝑦  ∈  𝐵 ( ♯ ‘ 𝐶 )  =  Σ 𝑥  ∈  𝐴 Σ 𝑦  ∈  𝐵 1 ) | 
						
							| 13 |  | 1cnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  1  ∈  ℂ ) | 
						
							| 14 |  | fsumconst | ⊢ ( ( 𝐵  ∈  Fin  ∧  1  ∈  ℂ )  →  Σ 𝑦  ∈  𝐵 1  =  ( ( ♯ ‘ 𝐵 )  ·  1 ) ) | 
						
							| 15 | 10 13 14 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  Σ 𝑦  ∈  𝐵 1  =  ( ( ♯ ‘ 𝐵 )  ·  1 ) ) | 
						
							| 16 | 15 | sumeq2dv | ⊢ ( 𝜑  →  Σ 𝑥  ∈  𝐴 Σ 𝑦  ∈  𝐵 1  =  Σ 𝑥  ∈  𝐴 ( ( ♯ ‘ 𝐵 )  ·  1 ) ) | 
						
							| 17 | 2 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  =  ( 𝐴  ∖  { 𝑥 } ) ) | 
						
							| 18 | 17 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ♯ ‘ 𝐵 )  =  ( ♯ ‘ ( 𝐴  ∖  { 𝑥 } ) ) ) | 
						
							| 19 |  | hashdifsn | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝑥  ∈  𝐴 )  →  ( ♯ ‘ ( 𝐴  ∖  { 𝑥 } ) )  =  ( ( ♯ ‘ 𝐴 )  −  1 ) ) | 
						
							| 20 | 1 19 | sylan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ♯ ‘ ( 𝐴  ∖  { 𝑥 } ) )  =  ( ( ♯ ‘ 𝐴 )  −  1 ) ) | 
						
							| 21 | 18 20 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ♯ ‘ 𝐵 )  =  ( ( ♯ ‘ 𝐴 )  −  1 ) ) | 
						
							| 22 | 21 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( ♯ ‘ 𝐵 )  ·  1 )  =  ( ( ( ♯ ‘ 𝐴 )  −  1 )  ·  1 ) ) | 
						
							| 23 | 22 | sumeq2dv | ⊢ ( 𝜑  →  Σ 𝑥  ∈  𝐴 ( ( ♯ ‘ 𝐵 )  ·  1 )  =  Σ 𝑥  ∈  𝐴 ( ( ( ♯ ‘ 𝐴 )  −  1 )  ·  1 ) ) | 
						
							| 24 |  | hashcl | ⊢ ( 𝐴  ∈  Fin  →  ( ♯ ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 25 | 1 24 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 26 | 25 | nn0cnd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 27 |  | peano2cnm | ⊢ ( ( ♯ ‘ 𝐴 )  ∈  ℂ  →  ( ( ♯ ‘ 𝐴 )  −  1 )  ∈  ℂ ) | 
						
							| 28 | 26 27 | syl | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝐴 )  −  1 )  ∈  ℂ ) | 
						
							| 29 | 28 | mulridd | ⊢ ( 𝜑  →  ( ( ( ♯ ‘ 𝐴 )  −  1 )  ·  1 )  =  ( ( ♯ ‘ 𝐴 )  −  1 ) ) | 
						
							| 30 | 29 | sumeq2sdv | ⊢ ( 𝜑  →  Σ 𝑥  ∈  𝐴 ( ( ( ♯ ‘ 𝐴 )  −  1 )  ·  1 )  =  Σ 𝑥  ∈  𝐴 ( ( ♯ ‘ 𝐴 )  −  1 ) ) | 
						
							| 31 |  | fsumconst | ⊢ ( ( 𝐴  ∈  Fin  ∧  ( ( ♯ ‘ 𝐴 )  −  1 )  ∈  ℂ )  →  Σ 𝑥  ∈  𝐴 ( ( ♯ ‘ 𝐴 )  −  1 )  =  ( ( ♯ ‘ 𝐴 )  ·  ( ( ♯ ‘ 𝐴 )  −  1 ) ) ) | 
						
							| 32 | 1 28 31 | syl2anc | ⊢ ( 𝜑  →  Σ 𝑥  ∈  𝐴 ( ( ♯ ‘ 𝐴 )  −  1 )  =  ( ( ♯ ‘ 𝐴 )  ·  ( ( ♯ ‘ 𝐴 )  −  1 ) ) ) | 
						
							| 33 | 30 32 | eqtrd | ⊢ ( 𝜑  →  Σ 𝑥  ∈  𝐴 ( ( ( ♯ ‘ 𝐴 )  −  1 )  ·  1 )  =  ( ( ♯ ‘ 𝐴 )  ·  ( ( ♯ ‘ 𝐴 )  −  1 ) ) ) | 
						
							| 34 | 16 23 33 | 3eqtrd | ⊢ ( 𝜑  →  Σ 𝑥  ∈  𝐴 Σ 𝑦  ∈  𝐵 1  =  ( ( ♯ ‘ 𝐴 )  ·  ( ( ♯ ‘ 𝐴 )  −  1 ) ) ) | 
						
							| 35 | 11 12 34 | 3eqtrd | ⊢ ( 𝜑  →  ( ♯ ‘ ∪  𝑥  ∈  𝐴 ∪  𝑦  ∈  𝐵 𝐶 )  =  ( ( ♯ ‘ 𝐴 )  ·  ( ( ♯ ‘ 𝐴 )  −  1 ) ) ) |