| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 2 |  | hashvnfin | ⊢ ( ( 𝑉  ∈  𝑊  ∧  2  ∈  ℕ0 )  →  ( ( ♯ ‘ 𝑉 )  =  2  →  𝑉  ∈  Fin ) ) | 
						
							| 3 | 1 2 | mpan2 | ⊢ ( 𝑉  ∈  𝑊  →  ( ( ♯ ‘ 𝑉 )  =  2  →  𝑉  ∈  Fin ) ) | 
						
							| 4 | 3 | imp | ⊢ ( ( 𝑉  ∈  𝑊  ∧  ( ♯ ‘ 𝑉 )  =  2 )  →  𝑉  ∈  Fin ) | 
						
							| 5 |  | hash2 | ⊢ ( ♯ ‘ 2o )  =  2 | 
						
							| 6 | 5 | eqcomi | ⊢ 2  =  ( ♯ ‘ 2o ) | 
						
							| 7 | 6 | a1i | ⊢ ( 𝑉  ∈  Fin  →  2  =  ( ♯ ‘ 2o ) ) | 
						
							| 8 | 7 | eqeq2d | ⊢ ( 𝑉  ∈  Fin  →  ( ( ♯ ‘ 𝑉 )  =  2  ↔  ( ♯ ‘ 𝑉 )  =  ( ♯ ‘ 2o ) ) ) | 
						
							| 9 |  | 2onn | ⊢ 2o  ∈  ω | 
						
							| 10 |  | nnfi | ⊢ ( 2o  ∈  ω  →  2o  ∈  Fin ) | 
						
							| 11 | 9 10 | ax-mp | ⊢ 2o  ∈  Fin | 
						
							| 12 |  | hashen | ⊢ ( ( 𝑉  ∈  Fin  ∧  2o  ∈  Fin )  →  ( ( ♯ ‘ 𝑉 )  =  ( ♯ ‘ 2o )  ↔  𝑉  ≈  2o ) ) | 
						
							| 13 | 11 12 | mpan2 | ⊢ ( 𝑉  ∈  Fin  →  ( ( ♯ ‘ 𝑉 )  =  ( ♯ ‘ 2o )  ↔  𝑉  ≈  2o ) ) | 
						
							| 14 | 13 | biimpd | ⊢ ( 𝑉  ∈  Fin  →  ( ( ♯ ‘ 𝑉 )  =  ( ♯ ‘ 2o )  →  𝑉  ≈  2o ) ) | 
						
							| 15 | 8 14 | sylbid | ⊢ ( 𝑉  ∈  Fin  →  ( ( ♯ ‘ 𝑉 )  =  2  →  𝑉  ≈  2o ) ) | 
						
							| 16 | 15 | adantld | ⊢ ( 𝑉  ∈  Fin  →  ( ( 𝑉  ∈  𝑊  ∧  ( ♯ ‘ 𝑉 )  =  2 )  →  𝑉  ≈  2o ) ) | 
						
							| 17 | 4 16 | mpcom | ⊢ ( ( 𝑉  ∈  𝑊  ∧  ( ♯ ‘ 𝑉 )  =  2 )  →  𝑉  ≈  2o ) | 
						
							| 18 |  | en2 | ⊢ ( 𝑉  ≈  2o  →  ∃ 𝑎 ∃ 𝑏 𝑉  =  { 𝑎 ,  𝑏 } ) | 
						
							| 19 | 17 18 | syl | ⊢ ( ( 𝑉  ∈  𝑊  ∧  ( ♯ ‘ 𝑉 )  =  2 )  →  ∃ 𝑎 ∃ 𝑏 𝑉  =  { 𝑎 ,  𝑏 } ) |