Step |
Hyp |
Ref |
Expression |
1 |
|
hash2prb |
⊢ ( 𝑃 ∈ 𝑉 → ( ( ♯ ‘ 𝑃 ) = 2 ↔ ∃ 𝑥 ∈ 𝑃 ∃ 𝑦 ∈ 𝑃 ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) ) ) |
2 |
|
simpr |
⊢ ( ( ( ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ∧ 𝑥 ≠ 𝑦 ) ∧ ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌 ) ) ∧ 𝑃 = { 𝑥 , 𝑦 } ) → 𝑃 = { 𝑥 , 𝑦 } ) |
3 |
|
3simpa |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌 ) → ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ) ) |
4 |
3
|
ad2antlr |
⊢ ( ( ( ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ∧ 𝑥 ≠ 𝑦 ) ∧ ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌 ) ) ∧ 𝑃 = { 𝑥 , 𝑦 } ) → ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ) ) |
5 |
|
eleq2 |
⊢ ( 𝑃 = { 𝑥 , 𝑦 } → ( 𝑋 ∈ 𝑃 ↔ 𝑋 ∈ { 𝑥 , 𝑦 } ) ) |
6 |
|
eleq2 |
⊢ ( 𝑃 = { 𝑥 , 𝑦 } → ( 𝑌 ∈ 𝑃 ↔ 𝑌 ∈ { 𝑥 , 𝑦 } ) ) |
7 |
5 6
|
anbi12d |
⊢ ( 𝑃 = { 𝑥 , 𝑦 } → ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ) ↔ ( 𝑋 ∈ { 𝑥 , 𝑦 } ∧ 𝑌 ∈ { 𝑥 , 𝑦 } ) ) ) |
8 |
7
|
adantl |
⊢ ( ( ( ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ∧ 𝑥 ≠ 𝑦 ) ∧ ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌 ) ) ∧ 𝑃 = { 𝑥 , 𝑦 } ) → ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ) ↔ ( 𝑋 ∈ { 𝑥 , 𝑦 } ∧ 𝑌 ∈ { 𝑥 , 𝑦 } ) ) ) |
9 |
4 8
|
mpbid |
⊢ ( ( ( ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ∧ 𝑥 ≠ 𝑦 ) ∧ ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌 ) ) ∧ 𝑃 = { 𝑥 , 𝑦 } ) → ( 𝑋 ∈ { 𝑥 , 𝑦 } ∧ 𝑌 ∈ { 𝑥 , 𝑦 } ) ) |
10 |
|
prel12g |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌 ) → ( { 𝑋 , 𝑌 } = { 𝑥 , 𝑦 } ↔ ( 𝑋 ∈ { 𝑥 , 𝑦 } ∧ 𝑌 ∈ { 𝑥 , 𝑦 } ) ) ) |
11 |
10
|
ad2antlr |
⊢ ( ( ( ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ∧ 𝑥 ≠ 𝑦 ) ∧ ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌 ) ) ∧ 𝑃 = { 𝑥 , 𝑦 } ) → ( { 𝑋 , 𝑌 } = { 𝑥 , 𝑦 } ↔ ( 𝑋 ∈ { 𝑥 , 𝑦 } ∧ 𝑌 ∈ { 𝑥 , 𝑦 } ) ) ) |
12 |
9 11
|
mpbird |
⊢ ( ( ( ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ∧ 𝑥 ≠ 𝑦 ) ∧ ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌 ) ) ∧ 𝑃 = { 𝑥 , 𝑦 } ) → { 𝑋 , 𝑌 } = { 𝑥 , 𝑦 } ) |
13 |
2 12
|
eqtr4d |
⊢ ( ( ( ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ∧ 𝑥 ≠ 𝑦 ) ∧ ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌 ) ) ∧ 𝑃 = { 𝑥 , 𝑦 } ) → 𝑃 = { 𝑋 , 𝑌 } ) |
14 |
13
|
exp31 |
⊢ ( ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ∧ 𝑥 ≠ 𝑦 ) → ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌 ) → ( 𝑃 = { 𝑥 , 𝑦 } → 𝑃 = { 𝑋 , 𝑌 } ) ) ) |
15 |
14
|
com23 |
⊢ ( ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ∧ 𝑥 ≠ 𝑦 ) → ( 𝑃 = { 𝑥 , 𝑦 } → ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌 ) → 𝑃 = { 𝑋 , 𝑌 } ) ) ) |
16 |
15
|
expimpd |
⊢ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) → ( ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) → ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌 ) → 𝑃 = { 𝑋 , 𝑌 } ) ) ) |
17 |
16
|
rexlimivv |
⊢ ( ∃ 𝑥 ∈ 𝑃 ∃ 𝑦 ∈ 𝑃 ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) → ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌 ) → 𝑃 = { 𝑋 , 𝑌 } ) ) |
18 |
1 17
|
syl6bi |
⊢ ( 𝑃 ∈ 𝑉 → ( ( ♯ ‘ 𝑃 ) = 2 → ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌 ) → 𝑃 = { 𝑋 , 𝑌 } ) ) ) |
19 |
18
|
imp |
⊢ ( ( 𝑃 ∈ 𝑉 ∧ ( ♯ ‘ 𝑃 ) = 2 ) → ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌 ) → 𝑃 = { 𝑋 , 𝑌 } ) ) |