Step |
Hyp |
Ref |
Expression |
1 |
|
hash2pr |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 2 ) → ∃ 𝑎 ∃ 𝑏 𝑉 = { 𝑎 , 𝑏 } ) |
2 |
|
equid |
⊢ 𝑏 = 𝑏 |
3 |
|
vex |
⊢ 𝑎 ∈ V |
4 |
|
vex |
⊢ 𝑏 ∈ V |
5 |
3 4
|
preqsn |
⊢ ( { 𝑎 , 𝑏 } = { 𝑏 } ↔ ( 𝑎 = 𝑏 ∧ 𝑏 = 𝑏 ) ) |
6 |
|
eqeq2 |
⊢ ( { 𝑎 , 𝑏 } = { 𝑏 } → ( 𝑉 = { 𝑎 , 𝑏 } ↔ 𝑉 = { 𝑏 } ) ) |
7 |
|
fveq2 |
⊢ ( 𝑉 = { 𝑏 } → ( ♯ ‘ 𝑉 ) = ( ♯ ‘ { 𝑏 } ) ) |
8 |
|
hashsng |
⊢ ( 𝑏 ∈ V → ( ♯ ‘ { 𝑏 } ) = 1 ) |
9 |
8
|
elv |
⊢ ( ♯ ‘ { 𝑏 } ) = 1 |
10 |
7 9
|
eqtrdi |
⊢ ( 𝑉 = { 𝑏 } → ( ♯ ‘ 𝑉 ) = 1 ) |
11 |
|
eqeq1 |
⊢ ( ( ♯ ‘ 𝑉 ) = 2 → ( ( ♯ ‘ 𝑉 ) = 1 ↔ 2 = 1 ) ) |
12 |
|
1ne2 |
⊢ 1 ≠ 2 |
13 |
|
df-ne |
⊢ ( 1 ≠ 2 ↔ ¬ 1 = 2 ) |
14 |
|
pm2.21 |
⊢ ( ¬ 1 = 2 → ( 1 = 2 → 𝑎 ≠ 𝑏 ) ) |
15 |
13 14
|
sylbi |
⊢ ( 1 ≠ 2 → ( 1 = 2 → 𝑎 ≠ 𝑏 ) ) |
16 |
12 15
|
ax-mp |
⊢ ( 1 = 2 → 𝑎 ≠ 𝑏 ) |
17 |
16
|
eqcoms |
⊢ ( 2 = 1 → 𝑎 ≠ 𝑏 ) |
18 |
11 17
|
syl6bi |
⊢ ( ( ♯ ‘ 𝑉 ) = 2 → ( ( ♯ ‘ 𝑉 ) = 1 → 𝑎 ≠ 𝑏 ) ) |
19 |
18
|
adantl |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 2 ) → ( ( ♯ ‘ 𝑉 ) = 1 → 𝑎 ≠ 𝑏 ) ) |
20 |
10 19
|
syl5com |
⊢ ( 𝑉 = { 𝑏 } → ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 2 ) → 𝑎 ≠ 𝑏 ) ) |
21 |
6 20
|
syl6bi |
⊢ ( { 𝑎 , 𝑏 } = { 𝑏 } → ( 𝑉 = { 𝑎 , 𝑏 } → ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 2 ) → 𝑎 ≠ 𝑏 ) ) ) |
22 |
21
|
impcomd |
⊢ ( { 𝑎 , 𝑏 } = { 𝑏 } → ( ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 2 ) ∧ 𝑉 = { 𝑎 , 𝑏 } ) → 𝑎 ≠ 𝑏 ) ) |
23 |
5 22
|
sylbir |
⊢ ( ( 𝑎 = 𝑏 ∧ 𝑏 = 𝑏 ) → ( ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 2 ) ∧ 𝑉 = { 𝑎 , 𝑏 } ) → 𝑎 ≠ 𝑏 ) ) |
24 |
2 23
|
mpan2 |
⊢ ( 𝑎 = 𝑏 → ( ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 2 ) ∧ 𝑉 = { 𝑎 , 𝑏 } ) → 𝑎 ≠ 𝑏 ) ) |
25 |
|
ax-1 |
⊢ ( 𝑎 ≠ 𝑏 → ( ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 2 ) ∧ 𝑉 = { 𝑎 , 𝑏 } ) → 𝑎 ≠ 𝑏 ) ) |
26 |
24 25
|
pm2.61ine |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 2 ) ∧ 𝑉 = { 𝑎 , 𝑏 } ) → 𝑎 ≠ 𝑏 ) |
27 |
|
simpr |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 2 ) ∧ 𝑉 = { 𝑎 , 𝑏 } ) → 𝑉 = { 𝑎 , 𝑏 } ) |
28 |
26 27
|
jca |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 2 ) ∧ 𝑉 = { 𝑎 , 𝑏 } ) → ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) |
29 |
28
|
ex |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 2 ) → ( 𝑉 = { 𝑎 , 𝑏 } → ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ) |
30 |
29
|
2eximdv |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 2 ) → ( ∃ 𝑎 ∃ 𝑏 𝑉 = { 𝑎 , 𝑏 } → ∃ 𝑎 ∃ 𝑏 ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ) |
31 |
1 30
|
mpd |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 2 ) → ∃ 𝑎 ∃ 𝑏 ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) |