Step |
Hyp |
Ref |
Expression |
1 |
|
pwpr |
⊢ 𝒫 { 𝑋 , 𝑌 } = ( { ∅ , { 𝑋 } } ∪ { { 𝑌 } , { 𝑋 , 𝑌 } } ) |
2 |
1
|
eleq2i |
⊢ ( 𝑃 ∈ 𝒫 { 𝑋 , 𝑌 } ↔ 𝑃 ∈ ( { ∅ , { 𝑋 } } ∪ { { 𝑌 } , { 𝑋 , 𝑌 } } ) ) |
3 |
|
elun |
⊢ ( 𝑃 ∈ ( { ∅ , { 𝑋 } } ∪ { { 𝑌 } , { 𝑋 , 𝑌 } } ) ↔ ( 𝑃 ∈ { ∅ , { 𝑋 } } ∨ 𝑃 ∈ { { 𝑌 } , { 𝑋 , 𝑌 } } ) ) |
4 |
2 3
|
bitri |
⊢ ( 𝑃 ∈ 𝒫 { 𝑋 , 𝑌 } ↔ ( 𝑃 ∈ { ∅ , { 𝑋 } } ∨ 𝑃 ∈ { { 𝑌 } , { 𝑋 , 𝑌 } } ) ) |
5 |
|
fveq2 |
⊢ ( 𝑃 = ∅ → ( ♯ ‘ 𝑃 ) = ( ♯ ‘ ∅ ) ) |
6 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
7 |
6
|
eqeq2i |
⊢ ( ( ♯ ‘ 𝑃 ) = ( ♯ ‘ ∅ ) ↔ ( ♯ ‘ 𝑃 ) = 0 ) |
8 |
|
eqeq1 |
⊢ ( ( ♯ ‘ 𝑃 ) = 0 → ( ( ♯ ‘ 𝑃 ) = 2 ↔ 0 = 2 ) ) |
9 |
|
0ne2 |
⊢ 0 ≠ 2 |
10 |
|
eqneqall |
⊢ ( 0 = 2 → ( 0 ≠ 2 → 𝑃 = { 𝑋 , 𝑌 } ) ) |
11 |
9 10
|
mpi |
⊢ ( 0 = 2 → 𝑃 = { 𝑋 , 𝑌 } ) |
12 |
8 11
|
syl6bi |
⊢ ( ( ♯ ‘ 𝑃 ) = 0 → ( ( ♯ ‘ 𝑃 ) = 2 → 𝑃 = { 𝑋 , 𝑌 } ) ) |
13 |
7 12
|
sylbi |
⊢ ( ( ♯ ‘ 𝑃 ) = ( ♯ ‘ ∅ ) → ( ( ♯ ‘ 𝑃 ) = 2 → 𝑃 = { 𝑋 , 𝑌 } ) ) |
14 |
5 13
|
syl |
⊢ ( 𝑃 = ∅ → ( ( ♯ ‘ 𝑃 ) = 2 → 𝑃 = { 𝑋 , 𝑌 } ) ) |
15 |
|
hashsng |
⊢ ( 𝑋 ∈ V → ( ♯ ‘ { 𝑋 } ) = 1 ) |
16 |
|
fveq2 |
⊢ ( { 𝑋 } = 𝑃 → ( ♯ ‘ { 𝑋 } ) = ( ♯ ‘ 𝑃 ) ) |
17 |
16
|
eqcoms |
⊢ ( 𝑃 = { 𝑋 } → ( ♯ ‘ { 𝑋 } ) = ( ♯ ‘ 𝑃 ) ) |
18 |
17
|
eqeq1d |
⊢ ( 𝑃 = { 𝑋 } → ( ( ♯ ‘ { 𝑋 } ) = 1 ↔ ( ♯ ‘ 𝑃 ) = 1 ) ) |
19 |
|
eqeq1 |
⊢ ( ( ♯ ‘ 𝑃 ) = 1 → ( ( ♯ ‘ 𝑃 ) = 2 ↔ 1 = 2 ) ) |
20 |
|
1ne2 |
⊢ 1 ≠ 2 |
21 |
|
eqneqall |
⊢ ( 1 = 2 → ( 1 ≠ 2 → 𝑃 = { 𝑋 , 𝑌 } ) ) |
22 |
20 21
|
mpi |
⊢ ( 1 = 2 → 𝑃 = { 𝑋 , 𝑌 } ) |
23 |
19 22
|
syl6bi |
⊢ ( ( ♯ ‘ 𝑃 ) = 1 → ( ( ♯ ‘ 𝑃 ) = 2 → 𝑃 = { 𝑋 , 𝑌 } ) ) |
24 |
18 23
|
syl6bi |
⊢ ( 𝑃 = { 𝑋 } → ( ( ♯ ‘ { 𝑋 } ) = 1 → ( ( ♯ ‘ 𝑃 ) = 2 → 𝑃 = { 𝑋 , 𝑌 } ) ) ) |
25 |
15 24
|
syl5com |
⊢ ( 𝑋 ∈ V → ( 𝑃 = { 𝑋 } → ( ( ♯ ‘ 𝑃 ) = 2 → 𝑃 = { 𝑋 , 𝑌 } ) ) ) |
26 |
|
snprc |
⊢ ( ¬ 𝑋 ∈ V ↔ { 𝑋 } = ∅ ) |
27 |
|
eqeq2 |
⊢ ( { 𝑋 } = ∅ → ( 𝑃 = { 𝑋 } ↔ 𝑃 = ∅ ) ) |
28 |
5 6
|
eqtrdi |
⊢ ( 𝑃 = ∅ → ( ♯ ‘ 𝑃 ) = 0 ) |
29 |
28
|
eqeq1d |
⊢ ( 𝑃 = ∅ → ( ( ♯ ‘ 𝑃 ) = 2 ↔ 0 = 2 ) ) |
30 |
29 11
|
syl6bi |
⊢ ( 𝑃 = ∅ → ( ( ♯ ‘ 𝑃 ) = 2 → 𝑃 = { 𝑋 , 𝑌 } ) ) |
31 |
27 30
|
syl6bi |
⊢ ( { 𝑋 } = ∅ → ( 𝑃 = { 𝑋 } → ( ( ♯ ‘ 𝑃 ) = 2 → 𝑃 = { 𝑋 , 𝑌 } ) ) ) |
32 |
26 31
|
sylbi |
⊢ ( ¬ 𝑋 ∈ V → ( 𝑃 = { 𝑋 } → ( ( ♯ ‘ 𝑃 ) = 2 → 𝑃 = { 𝑋 , 𝑌 } ) ) ) |
33 |
25 32
|
pm2.61i |
⊢ ( 𝑃 = { 𝑋 } → ( ( ♯ ‘ 𝑃 ) = 2 → 𝑃 = { 𝑋 , 𝑌 } ) ) |
34 |
14 33
|
jaoi |
⊢ ( ( 𝑃 = ∅ ∨ 𝑃 = { 𝑋 } ) → ( ( ♯ ‘ 𝑃 ) = 2 → 𝑃 = { 𝑋 , 𝑌 } ) ) |
35 |
|
hashsng |
⊢ ( 𝑌 ∈ V → ( ♯ ‘ { 𝑌 } ) = 1 ) |
36 |
|
fveq2 |
⊢ ( { 𝑌 } = 𝑃 → ( ♯ ‘ { 𝑌 } ) = ( ♯ ‘ 𝑃 ) ) |
37 |
36
|
eqcoms |
⊢ ( 𝑃 = { 𝑌 } → ( ♯ ‘ { 𝑌 } ) = ( ♯ ‘ 𝑃 ) ) |
38 |
37
|
eqeq1d |
⊢ ( 𝑃 = { 𝑌 } → ( ( ♯ ‘ { 𝑌 } ) = 1 ↔ ( ♯ ‘ 𝑃 ) = 1 ) ) |
39 |
38 23
|
syl6bi |
⊢ ( 𝑃 = { 𝑌 } → ( ( ♯ ‘ { 𝑌 } ) = 1 → ( ( ♯ ‘ 𝑃 ) = 2 → 𝑃 = { 𝑋 , 𝑌 } ) ) ) |
40 |
35 39
|
syl5com |
⊢ ( 𝑌 ∈ V → ( 𝑃 = { 𝑌 } → ( ( ♯ ‘ 𝑃 ) = 2 → 𝑃 = { 𝑋 , 𝑌 } ) ) ) |
41 |
|
snprc |
⊢ ( ¬ 𝑌 ∈ V ↔ { 𝑌 } = ∅ ) |
42 |
|
eqeq2 |
⊢ ( { 𝑌 } = ∅ → ( 𝑃 = { 𝑌 } ↔ 𝑃 = ∅ ) ) |
43 |
5
|
eqeq1d |
⊢ ( 𝑃 = ∅ → ( ( ♯ ‘ 𝑃 ) = 2 ↔ ( ♯ ‘ ∅ ) = 2 ) ) |
44 |
6
|
eqeq1i |
⊢ ( ( ♯ ‘ ∅ ) = 2 ↔ 0 = 2 ) |
45 |
44 11
|
sylbi |
⊢ ( ( ♯ ‘ ∅ ) = 2 → 𝑃 = { 𝑋 , 𝑌 } ) |
46 |
43 45
|
syl6bi |
⊢ ( 𝑃 = ∅ → ( ( ♯ ‘ 𝑃 ) = 2 → 𝑃 = { 𝑋 , 𝑌 } ) ) |
47 |
42 46
|
syl6bi |
⊢ ( { 𝑌 } = ∅ → ( 𝑃 = { 𝑌 } → ( ( ♯ ‘ 𝑃 ) = 2 → 𝑃 = { 𝑋 , 𝑌 } ) ) ) |
48 |
41 47
|
sylbi |
⊢ ( ¬ 𝑌 ∈ V → ( 𝑃 = { 𝑌 } → ( ( ♯ ‘ 𝑃 ) = 2 → 𝑃 = { 𝑋 , 𝑌 } ) ) ) |
49 |
40 48
|
pm2.61i |
⊢ ( 𝑃 = { 𝑌 } → ( ( ♯ ‘ 𝑃 ) = 2 → 𝑃 = { 𝑋 , 𝑌 } ) ) |
50 |
|
ax-1 |
⊢ ( 𝑃 = { 𝑋 , 𝑌 } → ( ( ♯ ‘ 𝑃 ) = 2 → 𝑃 = { 𝑋 , 𝑌 } ) ) |
51 |
49 50
|
jaoi |
⊢ ( ( 𝑃 = { 𝑌 } ∨ 𝑃 = { 𝑋 , 𝑌 } ) → ( ( ♯ ‘ 𝑃 ) = 2 → 𝑃 = { 𝑋 , 𝑌 } ) ) |
52 |
34 51
|
jaoi |
⊢ ( ( ( 𝑃 = ∅ ∨ 𝑃 = { 𝑋 } ) ∨ ( 𝑃 = { 𝑌 } ∨ 𝑃 = { 𝑋 , 𝑌 } ) ) → ( ( ♯ ‘ 𝑃 ) = 2 → 𝑃 = { 𝑋 , 𝑌 } ) ) |
53 |
|
elpri |
⊢ ( 𝑃 ∈ { ∅ , { 𝑋 } } → ( 𝑃 = ∅ ∨ 𝑃 = { 𝑋 } ) ) |
54 |
|
elpri |
⊢ ( 𝑃 ∈ { { 𝑌 } , { 𝑋 , 𝑌 } } → ( 𝑃 = { 𝑌 } ∨ 𝑃 = { 𝑋 , 𝑌 } ) ) |
55 |
53 54
|
orim12i |
⊢ ( ( 𝑃 ∈ { ∅ , { 𝑋 } } ∨ 𝑃 ∈ { { 𝑌 } , { 𝑋 , 𝑌 } } ) → ( ( 𝑃 = ∅ ∨ 𝑃 = { 𝑋 } ) ∨ ( 𝑃 = { 𝑌 } ∨ 𝑃 = { 𝑋 , 𝑌 } ) ) ) |
56 |
52 55
|
syl11 |
⊢ ( ( ♯ ‘ 𝑃 ) = 2 → ( ( 𝑃 ∈ { ∅ , { 𝑋 } } ∨ 𝑃 ∈ { { 𝑌 } , { 𝑋 , 𝑌 } } ) → 𝑃 = { 𝑋 , 𝑌 } ) ) |
57 |
4 56
|
syl5bi |
⊢ ( ( ♯ ‘ 𝑃 ) = 2 → ( 𝑃 ∈ 𝒫 { 𝑋 , 𝑌 } → 𝑃 = { 𝑋 , 𝑌 } ) ) |
58 |
57
|
imp |
⊢ ( ( ( ♯ ‘ 𝑃 ) = 2 ∧ 𝑃 ∈ 𝒫 { 𝑋 , 𝑌 } ) → 𝑃 = { 𝑋 , 𝑌 } ) |