| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwpr | ⊢ 𝒫  { 𝑋 ,  𝑌 }  =  ( { ∅ ,  { 𝑋 } }  ∪  { { 𝑌 } ,  { 𝑋 ,  𝑌 } } ) | 
						
							| 2 | 1 | eleq2i | ⊢ ( 𝑃  ∈  𝒫  { 𝑋 ,  𝑌 }  ↔  𝑃  ∈  ( { ∅ ,  { 𝑋 } }  ∪  { { 𝑌 } ,  { 𝑋 ,  𝑌 } } ) ) | 
						
							| 3 |  | elun | ⊢ ( 𝑃  ∈  ( { ∅ ,  { 𝑋 } }  ∪  { { 𝑌 } ,  { 𝑋 ,  𝑌 } } )  ↔  ( 𝑃  ∈  { ∅ ,  { 𝑋 } }  ∨  𝑃  ∈  { { 𝑌 } ,  { 𝑋 ,  𝑌 } } ) ) | 
						
							| 4 | 2 3 | bitri | ⊢ ( 𝑃  ∈  𝒫  { 𝑋 ,  𝑌 }  ↔  ( 𝑃  ∈  { ∅ ,  { 𝑋 } }  ∨  𝑃  ∈  { { 𝑌 } ,  { 𝑋 ,  𝑌 } } ) ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑃  =  ∅  →  ( ♯ ‘ 𝑃 )  =  ( ♯ ‘ ∅ ) ) | 
						
							| 6 |  | hash0 | ⊢ ( ♯ ‘ ∅ )  =  0 | 
						
							| 7 | 6 | eqeq2i | ⊢ ( ( ♯ ‘ 𝑃 )  =  ( ♯ ‘ ∅ )  ↔  ( ♯ ‘ 𝑃 )  =  0 ) | 
						
							| 8 |  | eqeq1 | ⊢ ( ( ♯ ‘ 𝑃 )  =  0  →  ( ( ♯ ‘ 𝑃 )  =  2  ↔  0  =  2 ) ) | 
						
							| 9 |  | 0ne2 | ⊢ 0  ≠  2 | 
						
							| 10 |  | eqneqall | ⊢ ( 0  =  2  →  ( 0  ≠  2  →  𝑃  =  { 𝑋 ,  𝑌 } ) ) | 
						
							| 11 | 9 10 | mpi | ⊢ ( 0  =  2  →  𝑃  =  { 𝑋 ,  𝑌 } ) | 
						
							| 12 | 8 11 | biimtrdi | ⊢ ( ( ♯ ‘ 𝑃 )  =  0  →  ( ( ♯ ‘ 𝑃 )  =  2  →  𝑃  =  { 𝑋 ,  𝑌 } ) ) | 
						
							| 13 | 7 12 | sylbi | ⊢ ( ( ♯ ‘ 𝑃 )  =  ( ♯ ‘ ∅ )  →  ( ( ♯ ‘ 𝑃 )  =  2  →  𝑃  =  { 𝑋 ,  𝑌 } ) ) | 
						
							| 14 | 5 13 | syl | ⊢ ( 𝑃  =  ∅  →  ( ( ♯ ‘ 𝑃 )  =  2  →  𝑃  =  { 𝑋 ,  𝑌 } ) ) | 
						
							| 15 |  | hashsng | ⊢ ( 𝑋  ∈  V  →  ( ♯ ‘ { 𝑋 } )  =  1 ) | 
						
							| 16 |  | fveq2 | ⊢ ( { 𝑋 }  =  𝑃  →  ( ♯ ‘ { 𝑋 } )  =  ( ♯ ‘ 𝑃 ) ) | 
						
							| 17 | 16 | eqcoms | ⊢ ( 𝑃  =  { 𝑋 }  →  ( ♯ ‘ { 𝑋 } )  =  ( ♯ ‘ 𝑃 ) ) | 
						
							| 18 | 17 | eqeq1d | ⊢ ( 𝑃  =  { 𝑋 }  →  ( ( ♯ ‘ { 𝑋 } )  =  1  ↔  ( ♯ ‘ 𝑃 )  =  1 ) ) | 
						
							| 19 |  | eqeq1 | ⊢ ( ( ♯ ‘ 𝑃 )  =  1  →  ( ( ♯ ‘ 𝑃 )  =  2  ↔  1  =  2 ) ) | 
						
							| 20 |  | 1ne2 | ⊢ 1  ≠  2 | 
						
							| 21 |  | eqneqall | ⊢ ( 1  =  2  →  ( 1  ≠  2  →  𝑃  =  { 𝑋 ,  𝑌 } ) ) | 
						
							| 22 | 20 21 | mpi | ⊢ ( 1  =  2  →  𝑃  =  { 𝑋 ,  𝑌 } ) | 
						
							| 23 | 19 22 | biimtrdi | ⊢ ( ( ♯ ‘ 𝑃 )  =  1  →  ( ( ♯ ‘ 𝑃 )  =  2  →  𝑃  =  { 𝑋 ,  𝑌 } ) ) | 
						
							| 24 | 18 23 | biimtrdi | ⊢ ( 𝑃  =  { 𝑋 }  →  ( ( ♯ ‘ { 𝑋 } )  =  1  →  ( ( ♯ ‘ 𝑃 )  =  2  →  𝑃  =  { 𝑋 ,  𝑌 } ) ) ) | 
						
							| 25 | 15 24 | syl5com | ⊢ ( 𝑋  ∈  V  →  ( 𝑃  =  { 𝑋 }  →  ( ( ♯ ‘ 𝑃 )  =  2  →  𝑃  =  { 𝑋 ,  𝑌 } ) ) ) | 
						
							| 26 |  | snprc | ⊢ ( ¬  𝑋  ∈  V  ↔  { 𝑋 }  =  ∅ ) | 
						
							| 27 |  | eqeq2 | ⊢ ( { 𝑋 }  =  ∅  →  ( 𝑃  =  { 𝑋 }  ↔  𝑃  =  ∅ ) ) | 
						
							| 28 | 5 6 | eqtrdi | ⊢ ( 𝑃  =  ∅  →  ( ♯ ‘ 𝑃 )  =  0 ) | 
						
							| 29 | 28 | eqeq1d | ⊢ ( 𝑃  =  ∅  →  ( ( ♯ ‘ 𝑃 )  =  2  ↔  0  =  2 ) ) | 
						
							| 30 | 29 11 | biimtrdi | ⊢ ( 𝑃  =  ∅  →  ( ( ♯ ‘ 𝑃 )  =  2  →  𝑃  =  { 𝑋 ,  𝑌 } ) ) | 
						
							| 31 | 27 30 | biimtrdi | ⊢ ( { 𝑋 }  =  ∅  →  ( 𝑃  =  { 𝑋 }  →  ( ( ♯ ‘ 𝑃 )  =  2  →  𝑃  =  { 𝑋 ,  𝑌 } ) ) ) | 
						
							| 32 | 26 31 | sylbi | ⊢ ( ¬  𝑋  ∈  V  →  ( 𝑃  =  { 𝑋 }  →  ( ( ♯ ‘ 𝑃 )  =  2  →  𝑃  =  { 𝑋 ,  𝑌 } ) ) ) | 
						
							| 33 | 25 32 | pm2.61i | ⊢ ( 𝑃  =  { 𝑋 }  →  ( ( ♯ ‘ 𝑃 )  =  2  →  𝑃  =  { 𝑋 ,  𝑌 } ) ) | 
						
							| 34 | 14 33 | jaoi | ⊢ ( ( 𝑃  =  ∅  ∨  𝑃  =  { 𝑋 } )  →  ( ( ♯ ‘ 𝑃 )  =  2  →  𝑃  =  { 𝑋 ,  𝑌 } ) ) | 
						
							| 35 |  | hashsng | ⊢ ( 𝑌  ∈  V  →  ( ♯ ‘ { 𝑌 } )  =  1 ) | 
						
							| 36 |  | fveq2 | ⊢ ( { 𝑌 }  =  𝑃  →  ( ♯ ‘ { 𝑌 } )  =  ( ♯ ‘ 𝑃 ) ) | 
						
							| 37 | 36 | eqcoms | ⊢ ( 𝑃  =  { 𝑌 }  →  ( ♯ ‘ { 𝑌 } )  =  ( ♯ ‘ 𝑃 ) ) | 
						
							| 38 | 37 | eqeq1d | ⊢ ( 𝑃  =  { 𝑌 }  →  ( ( ♯ ‘ { 𝑌 } )  =  1  ↔  ( ♯ ‘ 𝑃 )  =  1 ) ) | 
						
							| 39 | 38 23 | biimtrdi | ⊢ ( 𝑃  =  { 𝑌 }  →  ( ( ♯ ‘ { 𝑌 } )  =  1  →  ( ( ♯ ‘ 𝑃 )  =  2  →  𝑃  =  { 𝑋 ,  𝑌 } ) ) ) | 
						
							| 40 | 35 39 | syl5com | ⊢ ( 𝑌  ∈  V  →  ( 𝑃  =  { 𝑌 }  →  ( ( ♯ ‘ 𝑃 )  =  2  →  𝑃  =  { 𝑋 ,  𝑌 } ) ) ) | 
						
							| 41 |  | snprc | ⊢ ( ¬  𝑌  ∈  V  ↔  { 𝑌 }  =  ∅ ) | 
						
							| 42 |  | eqeq2 | ⊢ ( { 𝑌 }  =  ∅  →  ( 𝑃  =  { 𝑌 }  ↔  𝑃  =  ∅ ) ) | 
						
							| 43 | 5 | eqeq1d | ⊢ ( 𝑃  =  ∅  →  ( ( ♯ ‘ 𝑃 )  =  2  ↔  ( ♯ ‘ ∅ )  =  2 ) ) | 
						
							| 44 | 6 | eqeq1i | ⊢ ( ( ♯ ‘ ∅ )  =  2  ↔  0  =  2 ) | 
						
							| 45 | 44 11 | sylbi | ⊢ ( ( ♯ ‘ ∅ )  =  2  →  𝑃  =  { 𝑋 ,  𝑌 } ) | 
						
							| 46 | 43 45 | biimtrdi | ⊢ ( 𝑃  =  ∅  →  ( ( ♯ ‘ 𝑃 )  =  2  →  𝑃  =  { 𝑋 ,  𝑌 } ) ) | 
						
							| 47 | 42 46 | biimtrdi | ⊢ ( { 𝑌 }  =  ∅  →  ( 𝑃  =  { 𝑌 }  →  ( ( ♯ ‘ 𝑃 )  =  2  →  𝑃  =  { 𝑋 ,  𝑌 } ) ) ) | 
						
							| 48 | 41 47 | sylbi | ⊢ ( ¬  𝑌  ∈  V  →  ( 𝑃  =  { 𝑌 }  →  ( ( ♯ ‘ 𝑃 )  =  2  →  𝑃  =  { 𝑋 ,  𝑌 } ) ) ) | 
						
							| 49 | 40 48 | pm2.61i | ⊢ ( 𝑃  =  { 𝑌 }  →  ( ( ♯ ‘ 𝑃 )  =  2  →  𝑃  =  { 𝑋 ,  𝑌 } ) ) | 
						
							| 50 |  | ax-1 | ⊢ ( 𝑃  =  { 𝑋 ,  𝑌 }  →  ( ( ♯ ‘ 𝑃 )  =  2  →  𝑃  =  { 𝑋 ,  𝑌 } ) ) | 
						
							| 51 | 49 50 | jaoi | ⊢ ( ( 𝑃  =  { 𝑌 }  ∨  𝑃  =  { 𝑋 ,  𝑌 } )  →  ( ( ♯ ‘ 𝑃 )  =  2  →  𝑃  =  { 𝑋 ,  𝑌 } ) ) | 
						
							| 52 | 34 51 | jaoi | ⊢ ( ( ( 𝑃  =  ∅  ∨  𝑃  =  { 𝑋 } )  ∨  ( 𝑃  =  { 𝑌 }  ∨  𝑃  =  { 𝑋 ,  𝑌 } ) )  →  ( ( ♯ ‘ 𝑃 )  =  2  →  𝑃  =  { 𝑋 ,  𝑌 } ) ) | 
						
							| 53 |  | elpri | ⊢ ( 𝑃  ∈  { ∅ ,  { 𝑋 } }  →  ( 𝑃  =  ∅  ∨  𝑃  =  { 𝑋 } ) ) | 
						
							| 54 |  | elpri | ⊢ ( 𝑃  ∈  { { 𝑌 } ,  { 𝑋 ,  𝑌 } }  →  ( 𝑃  =  { 𝑌 }  ∨  𝑃  =  { 𝑋 ,  𝑌 } ) ) | 
						
							| 55 | 53 54 | orim12i | ⊢ ( ( 𝑃  ∈  { ∅ ,  { 𝑋 } }  ∨  𝑃  ∈  { { 𝑌 } ,  { 𝑋 ,  𝑌 } } )  →  ( ( 𝑃  =  ∅  ∨  𝑃  =  { 𝑋 } )  ∨  ( 𝑃  =  { 𝑌 }  ∨  𝑃  =  { 𝑋 ,  𝑌 } ) ) ) | 
						
							| 56 | 52 55 | syl11 | ⊢ ( ( ♯ ‘ 𝑃 )  =  2  →  ( ( 𝑃  ∈  { ∅ ,  { 𝑋 } }  ∨  𝑃  ∈  { { 𝑌 } ,  { 𝑋 ,  𝑌 } } )  →  𝑃  =  { 𝑋 ,  𝑌 } ) ) | 
						
							| 57 | 4 56 | biimtrid | ⊢ ( ( ♯ ‘ 𝑃 )  =  2  →  ( 𝑃  ∈  𝒫  { 𝑋 ,  𝑌 }  →  𝑃  =  { 𝑋 ,  𝑌 } ) ) | 
						
							| 58 | 57 | imp | ⊢ ( ( ( ♯ ‘ 𝑃 )  =  2  ∧  𝑃  ∈  𝒫  { 𝑋 ,  𝑌 } )  →  𝑃  =  { 𝑋 ,  𝑌 } ) |