Step |
Hyp |
Ref |
Expression |
1 |
|
fveqeq2 |
⊢ ( 𝑝 = 𝑃 → ( ( ♯ ‘ 𝑝 ) = 2 ↔ ( ♯ ‘ 𝑃 ) = 2 ) ) |
2 |
1
|
elrab |
⊢ ( 𝑃 ∈ { 𝑝 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑝 ) = 2 } ↔ ( 𝑃 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑃 ) = 2 ) ) |
3 |
|
elss2prb |
⊢ ( 𝑃 ∈ { 𝑝 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑝 ) = 2 } ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑎 ≠ 𝑏 ∧ 𝑃 = { 𝑎 , 𝑏 } ) ) |
4 |
|
simpr |
⊢ ( ( 𝑎 ≠ 𝑏 ∧ 𝑃 = { 𝑎 , 𝑏 } ) → 𝑃 = { 𝑎 , 𝑏 } ) |
5 |
4
|
reximi |
⊢ ( ∃ 𝑏 ∈ 𝑉 ( 𝑎 ≠ 𝑏 ∧ 𝑃 = { 𝑎 , 𝑏 } ) → ∃ 𝑏 ∈ 𝑉 𝑃 = { 𝑎 , 𝑏 } ) |
6 |
5
|
reximi |
⊢ ( ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑎 ≠ 𝑏 ∧ 𝑃 = { 𝑎 , 𝑏 } ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑃 = { 𝑎 , 𝑏 } ) |
7 |
3 6
|
sylbi |
⊢ ( 𝑃 ∈ { 𝑝 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑝 ) = 2 } → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑃 = { 𝑎 , 𝑏 } ) |
8 |
2 7
|
sylbir |
⊢ ( ( 𝑃 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑃 ) = 2 ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑃 = { 𝑎 , 𝑏 } ) |